h-index: 7     i10-index: 5

Document Type : Review Article

Authors

1 Department of Anatomy, Ebonyi State University, Abakaliki, Nigeria

2 Department of Microbiology, Federal University of Technology Owerri, Imo State, , Nigeria

3 Department of Chemical Sciences, Federal University Wukari, Taraba State, Nigeria

4 Department of Biotechnology, Federal University of Technology Owerri, Nigeria

Abstract

This review article explores the transformative impact of AI in the field of nanomedicine, specifically focusing on AI-enabled diagnostics and monitoring. Nanomedicine has emerged as a promising approach for improving medical imaging, drug delivery, diagnostics, and therapy, and AI has become a disruptive force that enhances the precision, efficiency, and personalization of healthcare solutions. We delve into the role of AI in designing and optimizing nanomaterials, drug delivery systems, and combinatorial nanomedicine administration. AI's potential to examine vast datasets, discover patterns and predict behaviour in biological systems is discussed. The paper also highlights the vital role of AI-driven nanosensors in the real-time monitoring of biomarkers within the human body. Interdisciplinary collaboration in healthcare is emphasized, as it is essential for addressing complex challenges and achieving global health goals. The article concludes by exploring how AI has revolutionized surgical planning, anatomical modelling, and virtual anatomy education in the context of nanomedicine. Overall, this review demonstrates the significant potential of AI-enabled diagnostics and monitoring in nanomedicine to revolutionize healthcare.

Keywords

Main Subjects

OPEN ACCESS

©2024 The author(s). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit: http://creativecommons.org/licenses/by/4.0/

PUBLISHER NOTE

Sami Publishing Company remains neutral concerning jurisdictional claims in published maps and institutional affiliations.

CURRENT PUBLISHER

Sami Publishing Company

 

 

  1. Morrow Jr J., Bawa  R.,  Wei  C., Recent advances in basic and clinical nanomedicine,  Medical Clinics of North America, 2007, 91:805 [Crossref], [Google Scholar], [Publisher]
  2. Ahmad A., Rashid S., Chaudhary A.A., Alawam A.S., Alghonaim M.I., Raza S.S., Khan R., January. Nanomedicine as potential cancer therapy via targeting dysregulated transcription factors, In Seminars in Cancer Biology. Academic Press, 2023 [Crossref], [Google Scholar], [Publisher]
  3. Andronie M., Lăzăroiu G., Iatagan M., Uță C., Ștefănescu R., Cocoșatu M., Artificial intelligence-based decision-making algorithms, internet of things sensing networks, and deep learning-assisted smart process management in cyber-physical production systems. Electronics, 2021, 10:2497 [Crossref], [Google Scholar], [Publisher]
  4. Ahmad A., Rashid S., Chaudhary A.A., Alawam A.S., Alghonaim M.I., Raza S.S., Khan R., January. Nanomedicine as potential cancer therapy via targeting dysregulated transcription factors, In Seminars in Cancer Biology. Academic Press, 2023 [Crossref], [Google Scholar], [Publisher]
  5. Khong J., Wang P., Gan T.R., Ng J., Anh T.T.L., Blasiak A., Kee T., Ho D., The role of artificial intelligence in scaling nanomedicine toward broad clinical impact, In Nanoparticles for Biomedical Applications, Elsevier, 2020, 385 [Crossref], [Google Scholar], [Publisher]
  6. Patel V., Chesmore A., Legner C.M., Pandey S., Trends in workplace wearable technologies and connected‐worker solutions for next‐generation occupational safety, health, and productivity, Advanced Intelligent Systems, 2022, 4:2100099 [Crossref], [Google Scholar], [Publisher]
  7. Allen T.M., Ligand-targeted therapeutics in anticancer therapy, Nature Reviews Cancer, 2002, 2:750 [Crossref], [Google Scholar], [Publisher]
  8. Topol E.J., High-performance medicine:the convergence of human and artificial intelligence, Nature medicine, 2019, 25:44 [Crossref], [Google Scholar], [Publisher]
  9. Ekpan F.M., Ori M.O., Samuel H.S., Egwuatu O.P., The synergy of AI and Drug delivery:A Revolution in Healthcare, International Journal of Advanced Biological and Biomedical Research, 2024, 12:45 [Crossref], [Publisher]
  10. Ori M.O., Ekpan F.M., Samuel H.S., Egwuatu O.P., Integration of Artificial Intelligence in Nanomedicine, Eurasian Journal of Science and Technology, 2024, 4:88 [Crossref], [Publisher]
  11. Samuel H.S., Ekpan FM., Revolutionizing Drugs Administration:Techniques in Drug Delivery and Development, BioEnergy Research, 2023, 8:000237 [Crossref], [Publisher]
  12. Peer , Karp  J.M., Hong  S., Farokhzad  O.C., Margalit R., Langer  R., Nanocarriers as an emerging platform for cancer therapy,  Nano-enabled medical applications, 2020, 61 [Crossref], [Google Scholar], [Publisher]
  13. Duncan R., Polymer conjugates as anticancer nanomedicines. Nature Reviews cancer, 2006, 6:688 [Crossref], [Google Scholar], [Publisher]
  14. Whitesides G.M., Nanoscience, nanotechnology, and chemistry, Small, 2005, 1:172 [Crossref], [Google Scholar], [Publisher]
  15. Chen G., Roy I., Yang C., Prasad P.N., Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy, Chemical Reviews, 2016, 116:2826 [Crossref], [Google Scholar], [Publisher]
  16. Liu Z., Cai W., He L., Nakayama N., Chen K., Sun X., Chen X., Dai H., In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice, Nature Nanotechnology, 2007, 2:47 [Crossref], [Google Scholar], [Publisher]
  17. Liu Z., Cai W., He L., Nakayama N., Chen K., Sun X., Chen X., Dai H., In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nature Nanotechnology, 2007, 2:47 [Crossref], [Google Scholar], [Publisher]
  18. Weissleder R., Kelly K., Sun E.Y., Shtatland T., Josephson L., Cell-specific targeting of nanoparticles by multivalent attachment of small molecules, Nature Biotechnology, 2005,  23:1418 [Crossref], [Google Scholar], [Publisher]
  19. Lee E.S., Na K., Bae Y.H., Polymeric micelle for tumor pH and folate-mediated targeting, Journal of Controlled Release2003, 91:103 [Crossref], [Google Scholar], [Publisher]
  20. Picard F.J., Bergeron M.G., Rapid molecular theranostics in infectious diseases, Drug Discovery Today, 2002, 7:1092 [Crossref], [Google Scholar], [Publisher]
  21. Astruc D., Introduction to nanomedicine, Molecules, 2015, 21:4 [Crossref], [Google Scholar], [Publisher]
  22. Morrow Jr K.J., Bawa R., Wei C., Recent advances in basic and clinical nanomedicine, Medical Clinics of North America, 2007, 91:805 [Crossref], [Google Scholar], [Publisher]
  23. Soares S., Sousa J., Pais ,  Vitorino C., Nanomedicine:principles, properties, and regulatory issues,  Frontiers in Chemistry,2018,  360 [Crossref], [Google Scholar], [Publisher]
  24. Riehemann , Schneider  S.W., Luger  T.A., Godin  B., Ferrari  M.,  Fuchs H., Nanomedicine—challenge and perspectives, Angewandte Chemie International Edition, 2009, 48:872 [Crossref], [Google Scholar], [Publisher]
  25. Pautler M., Brenner S., Nanomedicine:promises and challenges for the future of public health, International Journal of Nanomedicine, 2010, 803 [Crossref], [Google Scholar], [Publisher]
  26. Wong K.K.Y., Liu X.L., Nanomedicine:a primer for surgeons. Pediatric Surgery International, 2012,  28, 943 [Crossref], [Google Scholar], [Publisher]
  27. Ralph J., Akiyama, T., Coleman, H. D., Mansfield S. D., Effects on lignin structure of coumarate 3-hydroxylase downregulation in poplar, BioEnergy Research, 2012, 5:1009 [Crossref], [Google Scholar], [Publisher]
  28. Venkatraman S., Has nanomedicine lived up to its promise?, Nanotechnology, 2014, 25:372501 [Crossref], [Google Scholar], [Publisher]
  29. Adir O., Poley M., Chen G., Froim S., Krinsky N., Shklover J., Shainsky‐Roitman J., Lammers T., Schroeder A., Integrating artificial intelligence and nanotechnology for precision cancer medicine, Advanced Materials, 2020, 32:1901989 [Crossref], [Google Scholar], [Publisher]
  30. Naaz , Asghar A., Artificial intelligence, nano-technology and genomic medicine:The future of anaesthesia. Journal of Anaesthesiology, Clinical Pharmacology, 2022, 38:11 [Crossref], [Google Scholar], [Publisher]
  31. Ahmad A., Rashid S., Chaudhary A.A., Alawam A.S., Alghonaim M.I., Raza S.S., Khan R., January. Nanomedicine as potential cancer therapy via targeting dysregulated transcription factors. In Seminars in Cancer Biology. Academic Press, 2023 [Crossref], [Google Scholar], [Publisher]
  32. Ahmad , Rashid  S., Chaudhary A.A., Alawam A.S., Alghonaim M.I., Raza S.S.,  Khan R., January. Nanomedicine as potential cancer therapy via targeting dysregulated transcription factors. In Seminars in Cancer Biology. Academic Press, 2023 [Crossref], [Google Scholar], [Publisher]
  33. Tang X., The role of artificial intelligence in medical imaging research, BJR| Open, 2019, 2:20190031 [Crossref], [Google Scholar], [Publisher]
  34. Matsushita S., Tachibana K., Kusakabe T., Hirayama R., Tsutsumi Y., Kondoh M., Overview of the premarketing and postmarketing requirements for drugs granted Japanese conditional marketing approval, Clinical and Translational Science, 2021, 14:806 [Crossref], [Google Scholar], [Publisher]
  35. Agrahari V., Hiremath P., Challenges associated and approaches for successful translation of nanomedicines into commercial products. Nanomedicine, 2017, 12:819 [Crossref], [Google Scholar], [Publisher]
  36. Arts J.H., Hadi M., Keene A.M., Kreiling R., Lyon D., Maier M., Michel , Petry T., Sauer U.G., Warheit D., Wiench K., A critical appraisal of existing concepts for the grouping of nanomaterials, Regulatory Toxicology and Pharmacology, 2014,  70:492 [Crossref], [Google Scholar], [Publisher]
  37. Wang W., Craig Z.R., Basavarajappa M.S., Gupta R.K. Flaws J.A., Di (2-ethylhexyl) phthalate inhibits growth of mouse ovarian antral follicles through an oxidative stress pathway. Toxicology and applied pharmacology, 2012, 258:288 [Crossref], [Google Scholar], [Publisher]
  38. Albanese , Tang  P.S., Chan W.C., The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annual Review of Biomedical Engineering, 2012, 14:1 [Crossref], [Google Scholar], [Publisher]
  39. Liu Y., Miyoshi H., Nakamura M., Nanomedicine for drug delivery and imaging:a promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles, International Journal of Cancer, 2007, 120:2527 [Crossref], [Google Scholar], [Publisher]
  40. Matsushita S., Tachibana K., Kusakabe T., Hirayama R., Tsutsumi Y., Kondoh M., Overview of the premarketing and postmarketing requirements for drugs granted Japanese conditional marketing approval, Clinical and Translational Science, 2021, 14:806 [Crossref], [Google Scholar], [Publisher]
  41. Etheridge M.L., Campbell S.A., Erdman A.G., Haynes C.L., Wolf S.M., McCullough J., The big picture on nanomedicine:the state of investigational and approved nanomedicine products, Nanomedicine:Nanotechnology, Biology and Medicine, 2013, 9:1 [Crossref], [Google Scholar], [Publisher]
  42. Matsushita S., Tachibana K., Kusakabe T., Hirayama R., Tsutsumi Y., Kondoh M., Overview of the premarketing and postmarketing requirements for drugs granted Japanese conditional marketing approval, Clinical and Translational Science, 2021, 14:806 [Crossref], [Google Scholar], [Publisher]
  43. Quazi S.,. Artificial intelligence and machine learning in precision and genomic medicine, Medical Oncology, 2022, 39:120 [Crossref], [Google Scholar], [Publisher]
  44. Subramanian , Wojtusciszyn A., Favre L., Boughorbel S., Shan J., Letaief K.B., Pitteloud N., Chouchane L., Precision medicine in the era of artificial intelligence:implications in chronic disease management. Journal of Translational Medicine, 2020, 18:1 [Crossref], [Google Scholar], [Publisher]
  45. Uddin M., Wang Y., Woodbury-Smith, M., Artificial intelligence for precision medicine in neurodevelopmental disorders, NPJ Digital Medicine, 2019, 2:112 [Crossref], [Google Scholar], [Publisher]
  46. Matsushita S., Tachibana K., Kusakabe T., Hirayama R., Tsutsumi Y., Kondoh M., Overview of the premarketing and postmarketing requirements for drugs granted Japanese conditional marketing approval, Clinical and Translational Science, 2021, 14:806 [Crossref], [Google Scholar], [Publisher]
  47. Das K.P., Nanoparticles and convergence of artificial intelligence for targeted drug delivery for cancer therapy:Current progress and challenges. Frontiers in Medical Technology, 2023, 4:1067144 [Crossref], [Google Scholar], [Publisher]
  48. Serov N., Vinogradov V., Artificial intelligence to bring nanomedicine to life. Advanced Drug Delivery Reviews, 2022, 184:114194 [Crossref], [Google Scholar], [Publisher]
  49. Rizvi S.A., Saleh A.M., Applications of nanoparticle systems in drug delivery technology, Saudi Pharmaceutical Journal, 2018, 26:64 [Crossref], [Google Scholar], [Publisher]
  50. Tai , Huang Y., Zhu Q., Wu W., Yi T., Chen Z., Lu Y., Utility of Pickering emulsions in improved oral drug delivery, Drug Discovery Today, 2020, 25:2038 [Crossref], [Google Scholar], [Publisher]
  51. Egorov E., Pieters C., Korach-Rechtman H., Shklover J., Schroeder A., Robotics, microfluidics, nanotechnology and AI in the synthesis and evaluation of liposomes and polymeric drug delivery systems. Drug Delivery and Translational Research, 2021, 11:345 [Crossref], [Google Scholar], [Publisher]
  52. Vora L.K., Gholap A.D., Jetha K., Thakur R.R.S., Solanki H.K., Chavda V.P., Artificial intelligence in pharmaceutical technology and drug delivery design, Pharmaceutics, 2023, 15:1916 [Crossref], [Google Scholar], [Publisher]
  53. Dreiman G.H., Bictash M., Fish P.V., Griffin L., Svensson F., Changing the HTS paradigm:AI-driven iterative screening for hit finding. SLAS DISCOVERY:Advancing the Science of Drug Discovery, 2021, 26:257 [Crossref], [Google Scholar], [Publisher]
  54. Serghini A., Portelli ,  Ascher D.B., AI-Driven Enhancements in Drug Screening and Optimization. In Computational Drug Discovery and Design, New York, NY:Springer US, 2023, 269 [Crossref], [Google Scholar], [Publisher]
  55. Baum Z.J., Yu X., Ayala P.Y., Zhao Y., Watkins S.P., Zhou Q., Artificial intelligence in chemistry:current trends and future directions, Journal of Chemical Information and Modeling, 2021, 61:3197 [Crossref], [Google Scholar], [Publisher]
  56. Li R.Y., Lin M., Jiang H.Y., Wen S.H., Shen J.T., Huang W.Q., Zhang X.Y., Impact of anxiety or depression symptoms on propofol requirements for sedation in females:a prospective cohort study. The Journal of Clinical Pharmacology, 2020, 60, 1376 [Crossref], [Google Scholar], [Publisher]
  57. Aksu B., Paradkar A., de Matas M., Özer Ö., Güneri T., York P., A quality by design approach using artificial intelligence techniques to control the critical quality attributes of ramipril tablets manufactured by wet granulation, Pharmaceutical Development and Technology, 2013, 18:236 [Crossref], [Google Scholar], [Publisher]
  58. Goh W.Y., Lim C.P., Peh K.K., Subari K., Application of a recurrent neural network to prediction of drug dissolution profiles. Neural Computing & Applications, 2002, 10:311 [Crossref], [Google Scholar], [Publisher]
  59. Drăgoi E.N., Curteanu S., Fissore D., On the use of artificial neural networks to monitor a pharmaceutical freeze-drying process. Drying Technology, 2013, 31:72 [Crossref], [Google Scholar], [Publisher]
  60. Wu , December. Research and Design of Intelligent Generating Test Paper System. In 2009 International Conference on Computational Intelligence and Software Engineering, IEEE, 2009, 1 [Crossref], [Google Scholar], [Publisher]
  61. Hay M., Thomas D.W., Craighead J.L., Economides ,  Rosenthal J., Clinical development success rates for investigational drugs,  Nature Biotechnology, 2014, 32:40 [Crossref], [Google Scholar], [Publisher]
  62. Ding , Eliashberg  J., Stremersch S., Innovation and marketing in the pharmaceutical industry. International Series in Quantitative Marketing, 2014, 20:978 [Crossref], [Google Scholar], [Publisher]
  63. Parolo C., Idili A., Ortega G., Csordas A., Hsu A., Arroyo-Currás N., Yang Q., Ferguson B.S., Wang J., Plaxco K.W., Real-time monitoring of a protein biomarker. ACS Sensors, 2020, 5:1877 [Crossref], [Google Scholar], [Publisher]
  64. Wang , He  T., Zhou  H., Zhang  Z.,  Lee C., Artificial intelligence enhanced sensors-enabling technologies to next-generation healthcare and biomedical platform. Bioelectronic Medicine, 2023, 9:17 [Crossref], [Google Scholar], [Publisher]
  65. Xiao Y., Zhang Z., Yin S., Ma X., Nanoplasmonic biosensors for precision medicine. Frontiers in Chemistry, 2023, 11 [Crossref], [Google Scholar], [Publisher]
  66. Nuhn L., Artificial intelligence assists nanoparticles to enter solid tumours. Nature Nanotechnology, 2023, 1 [Crossref], [Google Scholar], [Publisher]
  67. Qureshi A., Aman  H., Schirhagl R., Prospects of using machine learning and diamond nanosensing for high sensitivity SARS-CoV-2 diagnosis, Magnetochemistry, 2023, 9:171 [Crossref], [Google Scholar], [Publisher]
  68. Lagopati N., Valamvanos T.F., Proutsou V., Karachalios K., Pippa N., Gatou M.A., Vagena I.A., Cela S., Pavlatou E.A., Gazouli M., Efstathopoulos E., The Role of Nano-Sensors in Breath Analysis for Early and Non-Invasive Disease Diagnosis. Chemosensors, 2023, 11:317 [Crossref], [Google Scholar], [Publisher]
  69. Tang , Zhang  R., Zheng  Y., Wang  J., Khatib  M., Jiang  X., Zhou  C., Omar  R., Saliba  W., Wu  W., Yuan M., Highly efficient self‐healing multifunctional dressing with antibacterial activity for sutureless wound closure and infected wound monitoring. Advanced Materials, 2022, 34:2106842 [Crossref], [Google Scholar], [Publisher]
  70. Gunawardena S., Weber ,  Agosto D.E., Finding that special someone:Interdisciplinary collaboration in an academic context. Journal of Education for Library and Information Science, 2010,  210 [Crossref], [Google Scholar], [Publisher]
  71. Sharma K., Mishra M.,  Mudgal S.K., Efficacy of cloth face mask in prevention of novel coronavirus infection transmission:A systematic review and meta-analysis. Journal of Education and Health Promotion, 2020, 9 [Crossref], [Google Scholar], [Publisher]
  72. Pham T., Kumar  P., Dahana  W.D. Nguyen D.H., Promoting global health transdisciplinary research for planetary health:Towards achieving the 2030 Agenda for Sustainable Development. Journal of Global Health,2023,  13 [Crossref], [Google Scholar], [Publisher]
  73. Bosch B., Mansell H., Interprofessional collaboration in health care:Lessons to be learned from competitive sports, Canadian Pharmacists Journal/Revue des Pharmaciens du Canada, 2015, 148:176 [Crossref], [Google Scholar], [Publisher]
  74. Wang H.H., Charoenmuang M., Knobloch N.A., Tormoehlen R.L., Defining interdisciplinary collaboration based on high school teachers’ beliefs and practices of STEM integration using a complex designed system, International Journal of STEM Education, 2020, 7:1 [Crossref], [Google Scholar], [Publisher]
  75. Samuelson M., Tedeschi , Aarendonk D., De La Cuesta  C., Groenewegen P., February. Improving inter-professional collaboration in Primary Care. In Position Paper of the European Forum for Primary Care Quality, in Primary Care, 2012,   20:303 [Crossref], [Google Scholar], [Publisher]
  76. Rawlinson C., Carron T., Cohidon C., Arditi C., Hong Q.N., Pluye P., Peytremann-Bridevaux , Gilles I.,. An overview of reviews on interprofessional collaboration in primary care:barriers and facilitators. International Journal of Integrated Care, 2021, 21 [Crossref], [Google Scholar], [Publisher]
  77. Geraghty ,  Oliver K., In the shadow of the ivory tower:Experiences of midwives and nurses undertaking PhDs. Nurse Education Today, 2018, 65:36 [Crossref], [Google Scholar], [Publisher]
  78. Josi R., Bianchi M., Brandt S.K., Advanced practice nurses in primary care in Switzerland:an analysis of interprofessional collaboration. BMC Nursing, 2020, 19:1 [Crossref], [Google Scholar], [Publisher]
  79. Chen ,  Agarwal R.K., Shape optimization of airfoils in transonic flow using a multi-objective genetic algorithm. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2014, 228:1654 [Crossref], [Google Scholar], [Publisher]
  80. Pregowska A., Perkins M., Artificial Intelligence in Medical Education Part 1:Typologies and Ethical Approaches. Available at SSRN 4576612 [Crossref], [Google Scholar], [Publisher]
  81. Gumbs A., Frigerio  I., Spolverato  G., Croner  R., Illanes  A., Chouillard  E.,  Elyan  E., Artificial intelligence surgery:How do we get to autonomous actions in surgery?. Sensors, 2021, 21:5526 [Crossref], [Google Scholar], [Publisher]
  82. Ahmed , Mohamed K., Zeeshan S.,  Dong X., Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine. Database, 2020, 2020:10 [Crossref], [Google Scholar], [Publisher]
  83. Mavrogenis F., Soultanis K., Patapis P., Papagelopoulos P.J., Anterior thigh flap extended hemipelvectomy and spinoiliac arthrodesis. Surgical Oncology, 2011, 20:215 [Crossref], [Google Scholar], [Publisher]
  84. Sweeney L., k-anonymity:A model for protecting privacy. International journal of uncertainty, fuzziness and Knowledge-Based Systems, 2002, 10:557 [Crossref], [Google Scholar], [Publisher]
  85. Mittelstadt B.D., Allo P., Taddeo M., Wachter S., Floridi L., The ethics of algorithms:Mapping the debate. Big Data & Society, 2016, 3:2053951716679679 [Crossref], [Google Scholar], [Publisher]
  86. Obermeyer , Powers  B., Vogeli  C.,  Mullainathan S., Dissecting racial bias in an algorithm used to manage the health of populations. Science, 2019, 366:44 [Crossref], [Google Scholar], [Publisher]