h-index: 7     i10-index: 5

Document Type : Review Article

Authors

1 Department of Microbiology Federal University of Technology Owerri, Nigeria

2 Department of BioTechnology Federal University of Technology Owerri, Imo State Nigeria

3 Department of Chemical Sciences, Federal University Wukari, Taraba State, Nigeria

4 Department of Anatomy, Ebonyi State University, Abakaliki, Nigeria

Abstract

The integration of artificial intelligence (AI) and nanotechnology has revolutionized the field of nanomedicine. AI’s large-scale data processing and pattern recognition capabilities can enhance the design of nanotechnologies for diagnosis and therapy. This integration can address challenges in fabrication and targeted drug delivery for cancer therapy. AI’s rapid data mining and decision-making capabilities can lead to more innovative solutions. The convergence of biology, AI, and nanotechnology is fostering a scientific and technological revolution. Recent studies show that AI can improve the design of nanotechnologies for diagnostics and treatment by processing large datasets and recognizing complex patterns. AI is also used in nanomedicine design to optimize material properties based on interactions with target medications, biological fluids, immune systems, and cell membranes.

Keywords

Main Subjects

[1] Gessner I.,  Neundorf I., Applications of AI-Enabled Nanomedicines in Cancer Management and their Application in Diagnosis, Monitoring and Therapy, American Journal of Computer Science and Information Technology, 2020, 11: 5 [Crossref], [Google Scholar], [Publisher]
[2] Li F., Chen Z., Chen X., Integrating Artificial Intelligence and Nanotechnology for Precision Cancer Medicine. Frontiers in Bioengineering and Biotechnology, 2023, 11:909525 [Crossref]
[3] Sharma A., Sharma M., Kumar P., AI Powered Identification of Drug Targets and Pathways for Diagnosis and Treatment Planning: A Review. Nanomedicine & Nanotechnology Open Access, 2023, 8:000232 [Crossref], [PDF]
[4] Vijayan R.S.K., Kihlberg J., Cross J.B., Poongavanam V., Enhancing preclinical drug discovery with artificial intelligence, Drug discovery today, 2022, 27:967 [Crossref], [Google Scholar], [Publisher]
[5] Skepu A., Phakathi B., Makgoka M., Mbita Z., Damane B.P., Demetriou D., Dlamini Z., AI and Nanomedicine in Realizing the Goal of Precision Medicine: Tailoring the Best Treatment for Personalized Cancer Treatment, In Artificial Intelligence and Precision Oncology: Bridging Cancer Research and Clinical Decision Support Cham: Springer Nature Switzerland, 2023, 181 [Crossref], [Google Scholar], [Publisher]
[6] Ho D., Wang P., Kee T., Artificial intelligence in nanomedicine. Nanoscale Horizons, 2019, 4:365 [Crossref], [Google Scholar], [Publisher]
[7] Adir O., Poley M., Chen G., Froim S., Krinsky N., Shklover J., Shainsky‐Roitman J., Lammers T., Schroeder, A., Integrating artificial intelligence and nanotechnology for precision cancer medicine, Advanced Materials, 2020,  32: 1901989 [Crossref], [Google Scholar], [Publisher]
[8] You J., Liu B., Ying Z., Pande V., Leskovec J., Graph convolutional policy network for goal-directed molecular graph generation, Advances in neural information processing systems, 2018, 31 [Google Scholar], [Publisher]
[9] Lombardo D., Kiselev M.A., Caccamo M.T., Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine, Journal of nanomaterials, 2019, 2019 [Crossref], [Google Scholar], [Publisher]
[10] Ramprasad R., Batra R., Pilania G., Mannodi-Kanakkithodi A., Kim C., Machine learning in materials informatics: recent applications and prospects, npj Computational Materials, 2017, 3: 54 [Crossref], [Google Scholar], [Publisher]
[11] Ghule S., Computational development of the strategies to explore molecular machines and the molecular space for desired properties using machine learning, 2022 [Google Scholar], [Publisher]
[12] Liu Y., Zhao T., Ju W., Shi S., Materials discovery and design using machine learning, Journal of Materiomics, 2017, 3: 159 [Crossref], [Google Scholar], [Publisher]
[13] Li J.S., Zhu L.T., Yan W.C., Rashid T.A.B., Xu Q.J., Luo Z.H., Coarse-grid simulations of full-loop gas-solid flows using a hybrid drag model: Investigations on turbulence models. Powder Technology, 2021, 379: 108 [Crossref], [Google Scholar], [Publisher]
[14] Townsend J., Micucci C.P., Hymel J.H., Maroulas V., Vogiatzis K.D., Representation of molecular structures with persistent homology for machine learning applications in chemistry, Nature communications, 2020, 11: 3230 [Crossref], [Google Scholar], [Publisher]
[15] Kashkooli F.M., Soltani M., Souri M., Controlled anti-cancer drug release through advanced nano-drug delivery systems: Static and dynamic targeting strategies, Journal of controlled release, 2020,  327: 316 [Crossref], [Google Scholar], [Publisher]
[16] Zhong  F., Xing  J., Li  X., Liu  X., Fu  Z., Xiong  Z., Lu  D., Wu  X., Zhao  J., Tan  X.,  Li  F., Artificial intelligence in drug design, Science China Life Sciences, 2018, 61: 1191 [Crossref], [Google Scholar], [Publisher]
[17] Brown N., Cambruzzi J., Cox P.J., Davies M., Dunbar J., Plumbley D., Sellwood M.A., Sim A., Williams-Jones B.I., Zwierzyna M., Sheppard D.W.,  Big data in drug discovery. Progress in Medicinal Chemistry, 2018,  57:277 [Crossref], [Google Scholar], [Publisher]
[18] Zhong L., Wu J., Li Q., Peng H.,  Wu  X., A comprehensive survey on automatic knowledge graph construction, arXiv preprint arXiv, 2023, 2302:5019 [Crossref], [Google Scholar], [Publisher]
[19] Jung E.A., Park Y.J.,  Kim J.E., Application of continuous manufacturing for solid oral dosage forms,  Journal of Pharmaceutical Investigation, 2023, 1 [Crossref], [Google Scholar], [Publisher]
[20] Mohammadi A.T., Sanjarian S., Tehrany P.M., Khorram R., Vafadar R., Mohseni H., Arzi B., Madady A., Shabbak A., Vaseghi S., Cutting-Edge Advances in Surgery, Nobel Sciences, 2023 [Google Scholar], [Publisher]
[21] Esteva A., Kuprel B., Novoa R.A., Ko J., Swetter S.M., Blau H.M., Thrun S., Dermatologist-level classification of skin cancer with deep neural networks, Nature, 2017, 542:115 [Crossref], [Google Scholar], [Publisher]
[22] Litjens G., Kooi T., Bejnordi B.E., Setio A.A.A., Ciompi F., Ghafoorian M., Van Der Laak J.A., Van Ginneken B.  Sánchez C.I., A survey on deep learning in medical image analysis, Medical Image Analysis, 2017, 42:60 [Crossref], [Google Scholar], [Publisher]
[23] Huang S., Yang J., Fong S., Zhao Q.,  Artificial intelligence in cancer diagnosis and prognosis: Opportunities and challenges. Cancer letters,2020,  471:61 [Crossref], [Google Scholar], [Publisher]
[24] Sujatha R., Chatterjee J.M., Jhanjhi N.Z., Brohi S.N., Performance of deep learning vs machine learning in plant leaf disease detection, Microprocessors and Microsystems, 2021, 80:103615 [Crossref], [Google Scholar], [Publisher]
[25] Gao A., Murphy R.R., Chen W., Dagnino G., Fischer P., Gutierrez M.G., Kundrat D., Nelson B.J., Shamsudhin N., Su H.,  Xia J., Progress in robotics for combating infectious diseases. Science Robotics, 2021, 6: 1462 [Crossref], [Google Scholar], [Publisher]
[26] Nguyen T., Sirichokcharoenkun Y., The Limitations and Potential of ChatGPT in Chemistry Education [Google Scholar]
[27] Adir O., Poley M., Chen G., Froim S., Krinsky N., Shklover J., Shainsky‐Roitman J., Lammers T.,  Schroeder A., Integrating artificial intelligence and nanotechnology for precision cancer medicine, Advanced Materials, 2020, 32:1901989. [Crossref], [Google Scholar], [Publisher]
[28] Egorov E., Pieters C., Korach-Rechtman H., Shklover J., Schroeder A., Robotics, microfluidics, nanotechnology and AI in the synthesis and evaluation of liposomes and polymeric drug delivery systems, Drug Delivery and Translational Research, 2021, 11:345 [Crossref], [Google Scholar], [Publisher]
[29] Das K.P., Nanoparticles and convergence of artificial intelligence for targeted drug delivery for cancer therapy: Current progress and challenges. Frontiers in Medical Technology, 2023, 4:1067144 [Crossref], [Google Scholar], [Publisher]
[30] Singh A.V., Chandrasekar V., Janapareddy P., Mathews D.E., Laux P., Luch A., Yang Y., Garcia-Canibano B., Balakrishnan S., Abinahed J. Al Ansari A., Emerging application of nanorobotics and artificial intelligence to cross the BBB: advances in design, controlled maneuvering, and targeting of the barriers, ACS chemical neuroscience, 2021, 12:1835 [Crossref], [Google Scholar], [Publisher]
[31] Markus A.F., Kors J.A., Rijnbeek P.R., The role of explainability in creating trustworthy artificial intelligence for health care: a comprehensive survey of the terminology, design choices, and evaluation strategies, Journal of biomedical informatics, 2021, 113:103655 [Crossref], [Google Scholar], [Publisher]
[32] Hajhouji F., Ganau M., Helene C., Romano A., Gubian A., Proust F. Chibbaro S., Rare encounters: Primary pineal malignant melanoma with lepto-meningeal spread. Case report and literature review on management challenges and outcomes, Journal of Clinical Neuroscience, 2019, 65:161 [Crossref], [Google Scholar], [Publisher]
[33] Li F., Ruijs N., Lu Y., Ethics & AI: A systematic review on ethical concerns and related strategies for designing with AI in healthcare,  AI, 2022,  4: 28 [Crossref], [Google Scholar], [Publisher]
[34] Stone P., Brooks R., Brynjolfsson E., Calo R., Etzioni O., Hager G., Hirschberg J., Kalyanakrishnan S., Kamar E., Kraus S., Leyton-Brown K., Artificial intelligence and life in 2030: the one hundred year study on artificial intelligence. arXiv preprint arXiv, 2022, 2211: 6318 [Crossref], [Google Scholar], [Publisher]
[35] Schicktanz  S., Welsch  J., Schweda  M., Hein  A., Rieger J.W., Kirste T., AI-Assisted Ethics? Considerations of AI Simulation for the Ethical Assessment and Design of Assistive Technologies, arXiv preprint arXiv, 2023, 2305: 566 [Crossref], [Google Scholar], [Publisher]
[36] Wasti  S., Lee I.H., Kim S., Lee J.H., Kim H., Ethical and legal challenges in nanomedical innovations: a scoping review. Frontiers in Genetics,2023,  14: 1163392 [Crossref], [Google Scholar], [Publisher]
[37] Zhang M., Zhang F. AI-assisted prediction of cancer nanomedicine efficacy using a physiologically-based pharmacokinetic model. Cancer Nanotechnology, 2023, 14:1 [Crossref]
[38] Samuel H.S., Etim E.E., Shinggu J.P., Bako B., Machine learning of Rotational spectra analysis in interstellar medium. Communication in Physical Sciences, 2023, 10 [Google Scholar]
[39] Li P., Gao Y.,  AI-powered nanomedicine for precision cancer therapy: Advances, challenges, and future perspectives. Nano Today, 2023, 54:101836 [Crossref]