h-index: 7     i10-index: 5

Document Type : Original Research Article


1 Institute of Physics, Baghdad ul Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan

2 National Centre for Physics, Quaid-i-Azam University Campus, Islamabad, 44000, Pakistan

3 Department of Physics, University of Education Lahore, DG Khan Campus 32200, Pakistan

4 Department of Physics and Astronomy, University of Nigeria Nsukka, 410001, Nigeria


Recent successes in the development of lead (Pb) halide perovskites have urged extensive research into cost-effective photovoltaic devices, to avoid significant challenges related to stability and toxicity. In this study, device modeling was presented for lead (Pb)-free perovskite solar cells (PSC), by employing FAsnI3 as the perovskite absorber layer. The simulation evaluates the impact of varying thickness, acceptor density of the hole transport layer (HTL), and temperature within the ranges from 50 to 250 nm, 1x1018 cm-3 to 1x1022 cm-3, and 300 K to 450 K, respectively. The photovoltaic cell has inverted geometry (p-i-n) and device structure is ITO/PEDOT:PSS/FASnI3/BCP/Au. The FASnI3-based PSC exhibits an efficiency of 14.03%, current density (Jsc) 20.4 mA/cm2, fill factor (FF) 76.7%, and open circuit voltage (Voc) 0.92 V and these results are already presented experimental with same device structure. These results showed that a more eco-friendly solar cell using methyl ammonium tin was created successfully as perovskite. It is suggested to use alternative materials instead of methyl ammonium tin as perovskite.


Main Subjects


©2024 The author(s). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit: http://creativecommons.org/licenses/by/4.0/


Sami Publishing Company remains neutral concerning jurisdictional claims in published maps and institutional affiliations.


Sami Publishing Company



[1]. Shah S.A.A., Sayyad M.H., Khan K., Guo K., Shen F., Sun J., Tareen A.K., Gong Y., Guo Z., Progress towards high-efficiency and stable tin-based perovskite solar cells, Energies, 2020, 13:5092 [Crossref], [Google Scholar], [Publisher]
[2]. Shukla R., Kumar R.R., Punetha D., Pandey S.K., Design perspective, fabrication, and performance analysis of formamidinium tin halide perovskite solar cell, IEEE Journal of Photovoltaics, 2023 [Crossref], [Google Scholar], [Publisher]
[3]. Stranks S.D., Eperon G.E., Grancini G., Menelaou C., Alcocer M.J., Leijtens T., Herz  L.M., Petrozza  A., Snaith H.J., Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342:341 [Crossref], [Google Scholar], [Publisher]
[4]. Kojima A., Teshima K., Shirai Y., Miyasaka T., Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, Journal of the american chemical society, 2009, 131:6050 [Crossref], [Google Scholar], [Publisher]
[5]. Tong J., Song Z., Kim D.H., Chen X., Chen C., Palmstrom A.F., Ndione P.F., Reese M.O., Dunfield S.P., Reid O.G., Liu J., Carrier lifetimes of> 1 μs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells, Science, 2019, 364:475 [Crossref], [Google Scholar], [Publisher]
[6]. Babayigit A., Ethirajan A., Muller M., Conings B., Toxicity of organometal halide perovskite solar cells, Nature Materials, 2016, 15:247 [Crossref], [Google Scholar], [Publisher]
[7]. Li N., Tao S., Chen Y., Niu X., Onwudinanti C.K., Hu C., Qiu Z., Xu Z., Zheng G., Wang L., Zhang Y., Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells, Nature Energy, 2019, 4:408 [Crossref], [Google Scholar], [Publisher]
[8]. Ke W., Kanatzidis M.G., Prospects for low-toxicity lead-free perovskite solar cells, Nature communications, 2019, 10:965 [Crossref], [Google Scholar], [Publisher]
[9]. Liu C., Tu J., Hu X., Huang Z., Meng X., Yang J., Duan X., Tan L., Li Z., Chen Y., Enhanced hole transportation for inverted tin‐based perovskite solar cells with high performance and stability, Advanced Functional Materials, 2019, 29:1808059 [Crossref], [Google Scholar], [Publisher]
[10]. Li C., Song Z., Chen C., Xiao C., Subedi B., Harvey S.P., Shrestha N., Subedi K.K., Chen L., Liu D., Li Y., Low-bandgap mixed tin–lead iodide perovskites with reduced methylammonium for simultaneous enhancement of solar cell efficiency and stability, Nature Energy, 2020, 5:768 [Crossref], [Google Scholar], [Publisher]
[11]. Kapil G., Hayase S., Tin Halide Perovskite Solar Cells. Hybrid Perovskite Solar Cells:Characteristics and Operation, 2021, 373 [Crossref], [Google Scholar], [Publisher]
[12]. Koh T.M., Krishnamoorthy T., Yantara N., Shi C., Leong W.L., Boix P.P., Grimsdale A.C., Mhaisalkar S.G., Mathews N., Formamidinium tin-based perovskite with low E g for photovoltaic applications, Journal of Materials Chemistry A, 2015, 3:14996 [Crossref], [Google Scholar], [Publisher]
[13]. Yu B.B., Chen Z., Zhu Y., Wang Y., Han B., Chen G., Zhang X., Du Z., He Z., Heterogeneous 2D/3D tin‐halides perovskite solar cells with certified conversion efficiency breaking 14%, Advanced Materials, 2021, 33:2102055 [Crossref], [Google Scholar], [Publisher]
[14]. Burschka J., Pellet N., Moon S.J., Humphry-Baker R., Gao P., Nazeeruddin M.K., Grätzel M., Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature, 2013, 499:316 [Crossref], [Google Scholar], [Publisher]
[15]. Lee S.J., Shin S.S., Kim Y.C., Kim D., Ahn T.K., Noh J.H., Seo J., Seok S.I., Fabrication of efficient formamidinium tin iodide perovskite solar cells through SnF2–pyrazine complex, Journal of the American Chemical Society, 2016, 138:3974 [Crossref], [Google Scholar], [Publisher]
[16]. Abdelaziz S., Zekry A., Shaker A. Abouelatta M., Investigating the performance of formamidinium tin-based perovskite solar cell by SCAPS device simulation, Optical Materials, 2020, 101:109738 [Crossref], [Google Scholar], [Publisher]
[17]. Bati A.S., Zhong Y.L., Burn P.L., Nazeeruddin M.K., Shaw P.E., Batmunkh M., Next-generation applications for integrated perovskite solar cells, Communications Materials, 2023, 4:2 [Crossref], [Google Scholar], [Publisher]
[18]. Bati A.S., Hao M., Macdonald T.J., Batmunkh M., Yamauchi Y., Wang L., Shapter J.G., 1D‐2D Synergistic MXene‐Nanotubes Hybrids for Efficient Perovskite Solar Cells, Small, 2021, 17:2101925 [Crossref], [Google Scholar], [Publisher]
[19]. Bati A.S., Batmunkh M., Shapter J.G., Emerging 2D layered materials for perovskite solar cells, Advanced Energy Materials, 2020, 10:1902253 [Crossref], [Google Scholar], [Publisher]
[20]. Hossain M.K., Toki G.I., Kuddus A., Rubel M.H.K., Hossain M.M., Bencherif H., Rahman M.F., Islam M.R., Mushtaq M., An extensive study on multiple ETL and HTL layers to design and simulation of high-performance lead-free CsSnCl3-based perovskite solar cells, Scientific Reports, 2023, 13:2521 [Crossref], [Google Scholar], [Publisher]
[21]. Zhu Z., Jiang X., Yu D., Yu N., Ning Z., Mi Q., Smooth and compact FASnI3 films for lead-free perovskite solar cells with over 14% efficiency, ACS Energy Letters, 2022, 7:2079 [Crossref], [Google Scholar], [Publisher]
[22]. Lakhdar N., Hima A., Electron transport material effect on performance of perovskite solar cells based on CH3NH3GeI3Optical Materials, 2020, 99:109517 [Crossref], [Google Scholar], [Publisher]
[23]. Jamal S., Khan A.D., Khan A.D., High performance perovskite solar cell based on efficient materials for electron and hole transport layers, Optik, 2020, 218:164787 [Crossref], [Google Scholar], [Publisher]
[24]. Głowienka D., Zhang D., Di Giacomo F., Najafi M., Veenstra S., Szmytkowski J., Galagan Y., Role of surface recombination in perovskite solar cells at the interface of HTL/CH3NH3PbI3Nano Energy, 2020, 67:104186 [Crossref], [Google Scholar], [Publisher]
[25]. Katariya A., Mahapatra B., Patel P.K., Rani J., Optimization of ETM and HTM layer on NFA based BHJ-organic solar cell for high efficiency performance, Optik, 2021, 245, 167717. [Crossref], [Google Scholar], [Publisher]
[26]. Saha P., Singh S., Bhattacharya S., Higher efficiency and stability in planar homojunction hybrid antimony (MA3Sb2I9)- based perovskite solar cells, IEEE Journal of Quantum Electronics, 2023, 59:1. [Crossref], [Google Scholar], [Publisher]
[27]. Foster S., Deledalle F., Mitani A., Kimura T., Kim K.B., Okachi T., Kirchartz T., Oguma J., Miyake K., Durrant J.R., Doi S., Electron collection as a limit to polymer:PCBM solar cell efficiency:Effect of blend microstructure on carrier mobility and device performance in PTB7:PCBM, Advanced Energy Materials, 2014, 4:1400311 [Crossref], [Google Scholar], [Publisher]
[28]. Nam W.S., Seo S.H., Park K.H., Hong S.H., Lee G.S., Park J.G., Nonvolatile memory characteristics of small-molecule memory cells with electron-transport and hole-transport bilayers, Current Applied Physics, 2010, 10:37 [Crossref], [Google Scholar], [Publisher]
[29]. Singh N., Agarwal A., Agarwal M., Numerical simulation of highly efficient lead-free all-perovskite tandem solar cell, Solar Energy, 2020, 208:399 [Crossref], [Google Scholar], [Publisher]
[30]. Jayan K.D., Sebastian V., Comprehensive device modelling and performance analysis of MASnI3 based perovskite solar cells with diverse ETM, HTM and back metal contacts, Solar Energy, 2021, 217:40 [Crossref], [Google Scholar], [Publisher]
[31]. Nagaoka H., Ma F., Dequilettes D.W., Vorpahl S.M., Glaz M.S., Colbert A.E., Ziffer M.E., Ginger D.S., Zr incorporation into TiO2 electrodes reduces hysteresis and improves performance in hybrid perovskite solar cells while increasing carrier lifetimes. The Journal of Physical Chemistry Letters, 2015, 6:669 [Crossref], [Google Scholar], [Publisher]
[32]. Jeyakumar R., Bag A., Nekovei R., Radhakrishnan R., Influence of electron transport layer (TiO 2) thickness and its doping density on the performance of CH 3 NH 3 PbI 3-based planar perovskite solar cells, Journal of Electronic Materials, 2020, 49:3533 [Crossref], [Google Scholar], [Publisher]
[33]. Zhang M., Lyu M., Yun J.H., Noori M., Zhou X., Cooling N.A., Wang Q., Yu H., Dastoor P.C., Wang L., Low-temperature processed solar cells with formamidinium tin halide perovskite/fullerene heterojunctions. Nano Research, 2016, 9:1570 [Crossref], [Google Scholar], [Publisher]