h-index: 7     i10-index: 5

Document Type : Review Article

Authors

1 Department of BioTechnology Federal University of Technology Owerri, Nigeria

2 Department of Microbiology Federal University of Technology Owerri, Nigeria

3 Department of Chemical Sciences, Federal University Wukari, Taraba State, Nigeria

4 Department of Anatomy, Ebonyi State University, Abakaliki, Nigeria

Abstract

In the face of growing environmental concerns and the need for sustainable energy sources, the production of bioethanol from lignocellulosic waste materials has emerged as a promising solution. This study provides an overview of efforts to enhance the eco-friendly production of bioethanol from lignocellulosic waste, addressing both the environmental and economic aspects of this renewable energy source. Lignocellulosic waste materials, such as agricultural residues and forest biomass, offer a rich source of raw materials for bioethanol production. Their utilization not only reduces waste accumulation, but also decreases the dependency on finite fossil fuels. However, the challenge lies in the efficient conversion of these materials into bioethanol while minimizing environmental impacts. To achieve this, researchers have been exploring various strategies, including advanced pretreatment techniques, enzymatic hydrolysis, and microbial fermentation. These methods aim to increase bioethanol yields, reduce production costs, and minimize waste generation, thus promoting a more sustainable and eco-friendly approach. In addition, the integration of waste-to-bioethanol processes with existing industries and the development of circular bio-economies hold promise for economic viability. As the world shifts towards a more sustainable energy future, these advancements in bioethanol production from lignocellulosic waste materials play a crucial role in reducing greenhouse gas emissions and mitigating environmental impacts.

Keywords

Main Subjects

OPEN ACCESS

©2024 The author(s). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit: http://creativecommons.org/licenses/by/4.0/

PUBLISHER NOTE

Sami Publishing Company remains neutral concerning jurisdictional claims in published maps and institutional affiliations.

CURRENT PUBLISHER

Sami Publishing Company

 

 

[1] Bušić  A., Marđetko  N., Kundas  S., Morzak G., Belskaya H., Ivančić Šantek M., Komes D., Novak S., Šantek B.,  Proizvodnja bioetanola iz obnovljivih sirovina te njegovo odvajanje i pročišćavanje:pregled, Food Technology and Biotechnology, 2018, 56:289 [Crossref], [Google Scholar], [Publisher]
[2] Devi  A., Bajar S., Kour H., Kothari R., Pant D., Singh A., Lignocellulosic biomass valorization for bioethanol production:a circular bioeconomy approach. Bioenergy Research, 2022,  15:1820 [Google Scholar], [Publisher]
[3] Mohanty B., Abdullahi  I.I., Bioethanol production from lignocellulosic waste-a review. Biosciences Biotechnology Research Asia, 2016, 13:1153 [Crossref], [Google Scholar], [Publisher]
[4] Mujtaba M., Fracet  L., Fazeli M., Mukherjee  S., Savassa S.M., de Medeiros G.A., Santo Pereira  A.D.E., Mancini S.D., Lipponen J., Vilaplana F., Lignocellulosic biomass from agricultural waste to the circular economy:A review with focus on biofuels, biocomposites and bioplastics, Journal of Cleaner Production, 2023,  136815. [Crossref], [Google Scholar], [Publisher]
[5] Broda M., Yelle D.J., Serwańska K., Bioethanol production from lignocellulosic biomass—challenges and solutions,  Molecules, 2022, 27:8717 [Crossref], [Google Scholar], [Publisher]
[6] Tran  T.T.A., Le T.K.P., Mai T.P. , Nguyen D.Q., Bioethanol production from lignocellulosic biomass. Alcohol Fuels-Current Technologies And Future Prospect,2019, 1 [Crossref], [Google Scholar], [Publisher]
[7] Tripathi N., Hills C.D., Singh R.S., Atkinson C.J., Biomass waste utilisation in low-carbon products:harnessing a major potential resource, NPJ Climate and Atmospheric Science, 2019, 2:35 [Crossref], [Google Scholar], [Publisher]
[8] Xu Z., Huang F., Pretreatment methods for bioethanol production, Applied Biochemistry and Biotechnology, 2014, 174:43 [Crossref], [Google Scholar], [Publisher]
[9] Shukla  A., Kumar  D., Girdhar  M., Kumar  A., Goyal  A., Malik  T.,  Mohan A., Strategies of pretreatment of feedstocks for optimized bioethanol production:distinct and integrated approaches,  Biotechnology for Biofuels and Bioproducts, 2023, 16:44 [Crossref], [Google Scholar], [Publisher]
[10] Vasić  K., Knez  Ž.,  Leitgeb M., Bioethanol production by enzymatic hydrolysis from different lignocellulosic sources,  Molecules, 2021, 26:753 [Crossref], [Google Scholar], [Publisher]
[11] Volynets B., Ein-Mozaffari  F., Dahman  Y., Biomass processing into ethanol:pretreatment, enzymatic hydrolysis, fermentation, rheology, and mixing, Green Processing and Synthesis, 2017, 6:1 [Crossref], [Google Scholar], [Publisher]
[12] Yuan  Y., Jiang  B., Chen  H., Wu  W., Wu  S., Jin  Y.,  Xiao H., Recent advances in understanding the effects of lignin structural characteristics on enzymatic hydrolysis,  Biotechnology for Biofuels, 2021, 14:1 [Crossref], [Google Scholar], [Publisher]
[13] Shukla  A., Kumar  D., Girdhar  M., Kumar A., Goyal  A., Malik  T., Mohan A., Strategies of pretreatment of feedstocks for optimized bioethanol production:distinct and integrated approaches,  Biotechnology for Biofuels and Bioproducts, 2023, 16:44 [Crossref], [Google Scholar], [Publisher]
[14] Phwan  C.K., Ong  H.C., Chen  W.H., Ling T.C., Ng  E.P., Show P.L.,  Overview:comparison of pretreatment technologies and fermentation processes of bioethanol from microalgae, Energy Conversion and Management, 2018, 173:81 [Crossref], [Google Scholar], [Publisher]
[15] Dimos K., Paschos T., Louloudi A., Kalogiannis  K.G., Lappas  A.A., Papayannakos  N., Kekos  D., Mamma  D., Effect of various pretreatment methods on bioethanol production from cotton stalks,  Fermentation, 2019, 5:5 [Crossref], [Google Scholar], [Publisher]
[16] Bender  L.E., Lopes S.T., Gomes K.S., Devos  R.J.B., Colla L.M., Challenges in bioethanol production from food residues,  Bioresource Technology Reports, 2022,  101171 [Crossref], [Google Scholar], [Publisher]
[17] Merritt  H.,  Barragán-Ocaña  A., The impact of market factors on the development of eco-friendly energy technologies:the case of bioethanol,  Clean Technologies and Environmental Policy, 2021, 1 [Crossref], [Google Scholar], [Publisher]
[18] Jeswani  H.K., Chilvers A.,  Azapagic  A., Environmental sustainability of biofuels:a review, Proceedings of the Royal Society A, 2020, 476:20200351. [Crossref], [Google Scholar], [Publisher]
[19] Safarian  S.,  Unnthorsson  R., An assessment of the sustainability of lignocellulosic bioethanol production from wastes in Iceland, Energies, 2018, 11:1493 [Crossref], [Google Scholar], [Publisher]
[20] Liu W.J., Yu  H.Q., Thermochemical conversion of lignocellulosic biomass into mass-producible fuels:emerging technology progress and environmental sustainability evaluation, ACS Environmental Au, 2021, 2:98 [Crossref], [Google Scholar], [Publisher]
[21] Patel  A.D., Zabeti  M., Seshan  K.,  Patel M.K., Economic and environmental assessment of catalytic and thermal pyrolysis routes for fuel production from lignocellulosic biomass,  Processes, 2020,  8:1612 [Crossref], [Google Scholar], [Publisher]
[22] Marques  A., Martins  I.S., Kastner T., Plutzar C., Theurl M.C., Eisenmenger N., Huijbregts M.A., Wood  R., Stadler  K., Bruckner  M.,  Canelas  J., Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth, Nature Ecology & Evolution, 2019, 3:628 [Crossref], [Google Scholar], [Publisher]
[23] Stenzel F., Greve P., Lucht W., Tramberend  S., Wada  Y., Gerten  D., Irrigation of biomass plantations may globally increase water stress more than climate change, Nature Communications, 2021, 12:1512 [Crossref], [Google Scholar], [Publisher]
[24] Broda M., Yelle D.J., Serwańska K., Bioethanol production from lignocellulosic biomass—challenges and solutions, Molecules, 2022, 27:8717 [Crossref], [Google Scholar], [Publisher]
[25] Blasi A., Verardi A., Lopresto C.G., Siciliano S., Sangiorgio P., Lignocellulosic agricultural waste valorization to obtain valuable products:An overview, Recycling, 2023, 8:61 [Crossref], [Google Scholar], [Publisher]
[26] Bušić  A., Marđetko  N., Kundas  S., Morzak  G., Belskaya  H., Ivančić Šantek  M., Komes  D., Novak  S.,  Šantek  B., Proizvodnja bioetanola iz obnovljivih sirovina te njegovo odvajanje i pročišćavanje:pregled,  Food Technology and Biotechnology, 2018, 56:289 [Crossref], [Google Scholar], [Publisher]
[27] Devi  A., Bajar  S., Kour  H., Kothari  R., Pant  D., Singh A., Lignocellulosic biomass valorization for bioethanol production:a circular bioeconomy approach,  Bioenergy Research, 2022, 15:1820 [Crossref], [Google Scholar], [Publisher]
[28] Saini  J.K., Saini  R.,  Tewari  L., Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production:concepts and recent developments, 2015, 3:337 [Crossref], [Google Scholar], [Publisher]
[29] Ștefănescu-Mihăilă  R.O., Rural economy and bioethanol production. Sustainability, 2016, 8:1148 [Crossref], [Google Scholar], [Publisher]
[30] Zhu  J.Y., Pan  X.,  Zalesny R.S., Pretreatment of woody biomass for biofuel production:energy efficiency, technologies, and recalcitrance,  Applied Microbiology and Biotechnology, 2010, 87:847 [Google Scholar], [Publisher]
[31] Jin  M., Gunawan  C., Balan  V., Dale  B.E., Consolidated bioprocessing (CBP) of AFEX™‐pretreated corn stover for ethanol production using Clostridium phytofermentans at a high solids loading,  Biotechnology and Bioengineering, 2012, 109:1929 [Crossref], [Google Scholar], [Publisher]
[32] Xiao  B., Sun  X., Sun  R., Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw, Polymer Degradation and Stability, 2001, 74:307 [Crossref], [Google Scholar], [Publisher]
[33] Ballesteros  M., Oliva  J.M., Manzanares  P., Negro  M.J.,  Ballesteros  I., Ethanol production from paper material using a simultaneous saccharification and fermentation system in a fed-batch basis,  World Journal of Microbiology and Biotechnology, 2002, 18:559 [Crossref], [Google Scholar], [Publisher]
[34] Ekpan F.M., Ori M.O., Samuel H.S., Egwuatu O.P., The synergy of AI and Drug delivery: A Revolution in Healthcare, International Journal of Advanced Biological and Biomedical Research, 2024, 12:45 [Crossref], [Publisher]
[35] Chundawat  S.P., Beckham  G.T., Himmel  M.E.,  Dale  B.E., Deconstruction of lignocellulosic biomass to fuels and chemicals,  Annual Review of Chemical and Biomolecular Engineering, 2011, 2:121 [Crossref], [Google Scholar], [Publisher]
[36] Taherzadeh  M.J.,  Karimi K., Pretreatment of lignocellulosic wastes to improve ethanol and biogas production:a review, International Journal of Molecular Sciences, 2008, 9:1621 [Crossref], [Google Scholar], [Publisher]
[37] Chen  Y., Stevens M.A., Zhu  Y., Holmes  J., Xu H., Understanding of alkaline pretreatment parameters for corn stover enzymatic saccharification, Biotechnology for Biofuels2013, 6:1 [Crossref], [Google Scholar], [Publisher]
[38] Jin  M., Gunawan  C., Balan  V.,  Dale  B.E., Consolidated bioprocessing (CBP) of AFEX™‐pretreated corn stover for ethanol production using Clostridium phytofermentans at a high solids loading,  Biotechnology and Bioengineering, 2012, 109:1929 [Crossref], [Google Scholar], [Publisher]
[39] Lynd  L.R., Van Zyl  W.H., McBride  J.E.,  Laser  M., Consolidated bioprocessing of cellulosic biomass:an update, Current Opinion in Biotechnology, 2005, 16:577 [Crossref], [Google Scholar], [Publisher]
[40] Ragauskas  A.J., Beckham  G.T., Biddy  M.J., Chandra R., Chen  F., Davis  M.F., Davison  B.H., Dixon  R.A., Gilna  P., Keller  M.,  Langan  P., Lignin valorization:improving lignin processing in the biorefinery, Science, 2014,  344:1246843 [Crossref], [Google Scholar], [Publisher]
[41] Turner  T.L., Kim  H., Kong  I.I., Liu  J.J., Zhang  G.C.,  Jin  Y.S., Engineering and evolution of Saccharomyces cerevisiae to produce biofuels and chemicals, Synthetic Biology–Metabolic Engineering, 2018,  175 [Crossref], [Google Scholar], [Publisher]
[42] Pereira  J.H., Chen  Z., McAndrew  R.P., Sapra  R., Chhabra  S.R., Sale  K.L., Simmons  B.A., Adams P.D.,  Biochemical characterization and crystal structure of endoglucanase Cel5A from the hyperthermophilic Thermotoga maritima,  Journal of structural biology, 2010, 172:372 [Crossref], [Google Scholar], [Publisher]
[43] Bugg  T.D., Ahmad  M., Hardiman  E.M.,  Rahmanpour  R., Pathways for degradation of lignin in bacteria and fungi,  Natural Product Reports, 2011, 28:1883 [Crossref], [Google Scholar], [Publisher]
[44] Safarian S., Unnthorsson R., An assessment of the sustainability of lignocellulosic bioethanol production from wastes in Iceland,  Energies, 2018, 11:1493 [Crossref], [Google Scholar], [Publisher]
[45] Shahzadi T., Mehmood S., Irshad M., Anwar Z., Afroz A., Zeeshan N., Rashid U., Sughra K., Advances in lignocellulosic biotechnology:A brief review on lignocellulosic biomass and cellulases, Advances in Bioscience and Biotechnology, 2014, 5:246 [Crossref], [Google Scholar], [Publisher]
[46] Zhang  J., Rentizelas  A., Zhang  X., Li  J., Sustainable production of lignocellulosic bioethanol towards zero waste biorefinery, Sustainable Energy Technologies and Assessments, 2022, 53:102627 [Crossref], [Google Scholar], [Publisher]
[47] Ojeda  K., Sánchez  E., Kafarov  V., Sustainable ethanol production from lignocellulosic biomass–Application of exergy analysis, Energy, 2011, 36:2119 [Crossref], [Google Scholar], [Publisher]
[48] Maryana  R., Ma’rifatun  D., Wheni  A.I., Satriyo  K.W., Rizal W.A., Alkaline pretreatment on sugarcane bagasse for bioethanol production, Energy Procedia, 2014, 47:250 [Crossref], [Google Scholar], [Publisher]
[49] Ramadoss  G., Muthukumar K., Influence of dual salt on the pretreatment of sugarcane bagasse with hydrogen peroxide for bioethanol production, Chemical Engineering Journal, 2015, 260:178 [Crossref], [Google Scholar], [Publisher]
[50] Nawaz  A., Huang  R., Junaid  F., Feng  Y., Haq  I.U., Mukhtar  H., Jiang K., Sustainable production of bioethanol using levulinic acid pretreated sawdust. Frontiers in Bioengineering and Biotechnology, 2022, 10:937838. [Crossref], [Google Scholar], [Publisher]
[51] Mizik T., Economic aspects and sustainability of ethanol production—a systematic literature review, Energies, 2021, 14:6137 [Crossref], [Google Scholar], [Publisher]
[52] Broda  M., Yelle  D.J., Serwańska  K., Bioethanol production from lignocellulosic biomass—challenges and solutions, Molecules, 2022,  27:8717 [Crossref], [Google Scholar], [Publisher]
[53] Adewuyi A., Underutilized lignocellulosic waste as sources of feedstock for biofuel production in developing countries, Frontiers in Energy Research, 2022, 10:741570. [Crossref], [Google Scholar], [Publisher]
[54] Devi  A., Bajar  S., Kour  H., Kothari  R., Pant  D., Singh  A., Lignocellulosic biomass valorization for bioethanol production:a circular bioeconomy approach, Bioenergy Research, 2022, 15:1820 [Crossref], [Google Scholar], [Publisher]
[55] Mizik  T., Economic aspects and sustainability of ethanol production—a systematic literature review, Energies, 2021, 14:6137 [Crossref], [Google Scholar], [Publisher]
[56] Saini  J.K., Saini  R., Tewari L., Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production:concepts and recent developments. 2015, 3:337 [Crossref], [Google Scholar], [Publisher]