h-index: 7     i10-index: 6

Document Type : Review Article


1 Department of Chemical Sciences, Federal University Wukari, Taraba State, Nigeria

2 Department of Chemistry, Rivers State University, Nkpolu-Oroworukwo, Port Harcourt, Nigeria


Chalcogen bonding, a non-covalent interaction involving chalcogen atoms (e.g., sulfur, selenium, and tellurium), plays a crucial role in various chemical and biological processes. Understanding and characterizing chalcogen bonding interactions are essential for designing novel materials, medications, and catalysts. In recent years, machine learning has emerged as a powerful tool for studying molecular interactions, including chalcogen bonding. This study provides an overview of the application of machine learning in characterizing chalcogen bonding. Experimental techniques, such as infrared (IR), nuclear magnetic resonance (NMR) spectroscopy, and X-ray crystallography, have been used to study chalcogen bonding. However, these methods often suffer from inherent experimental challenges. On the other hand, computational approaches, including quantum mechanics (QM) and molecular dynamics (MD) simulations, offer valuable insights into the electronic structure and energetics of chalcogen bonding. Nonetheless, they can be computationally demanding and may not fully encompass the diversity of chalcogen bonding interactions. Machine learning, with its ability to identify patterns and relationships in vast datasets, presents a promising alternative for characterizing chalcogen bonding. The study explains how machine learning algorithms, such as supervised and unsupervised learning, can be employed to classify and predict chalcogen-bonded complexes using neural network potentials to assess the persistence of chalcogen bonds in solution and ML models to predict two key solid-state synthesis conditions that must be specified for chalcogenide glasses. By integrating experimental data and computational results, machine learning models offer a holistic approach to understanding chalcogen bonding in various molecular systems. It emphasizes the integration of experimental and computational data as a means to maximize the accuracy and applicability of machine learning models and envisions a promising future for machine learning in characterizing chalcogen bonding interactions.


Main Subjects


©2024 The author(s). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit: http://creativecommons.org/licenses/by/4.0/


Sami Publishing Company remains neutral concerning jurisdictional claims in published maps and institutional affiliations.


Sami Publishing Company

[1] Alikhani E., Fuster F., Madebene B., Grabowski S.J., Topological reaction sites–very strong chalcogen bonds. Physical Chemistry Chemical Physics, 2014, 16:2430 [Crossref], [Google Scholar], [Publisher]
[2] Andrews S.S., Tretton J., Physical principles of circular dichroism. Journal of Chemical Education, 2020, 97:4370 [Crossref], [Google Scholar],  [Publisher]
[3] Alkorta I., Elguero J., Frontera A., Not only hydrogen bonds:Other noncovalent interactions. Crystals, 2020, 10:180  [Crossref], [Google Scholar], [Publisher]
[4] Alfuth J., Zadykowicz B., Wicher B., Kazimierczuk K., Połoński T., Olszewska T., Cooperativity of Halogen-and Chalcogen-Bonding Interactions in the Self-Assembly of 4-Iodoethynyl-and 4, 7-Bis (iodoethynyl) benzo-2, 1, 3-chalcogenadiazoles:Crystal Structures, Hirshfeld Surface Analyses, and Crystal Lattice Energy Calculations. Crystal Growth & Design, 2022, 22:1299 [Crossref], [Google Scholar], [Publisher]
[5] Bleiholder C., Werz D.B., Köppel H., Gleiter R., Theoretical investigations on chalcogen− chalcogen interactions:what makes these nonbonded interactions bonding?. Journal of the American Chemical Society, 2006, 128:2666 [Crossref], [Google Scholar], [Publisher]
[6] Eikås K.D.R., Beerepoot M.T., Ruud K., A computational protocol for vibrational circular dichroism spectra of cyclic oligopeptides. The Journal of Physical Chemistry A, 2022, 126:5458 [Crossref], [Google Scholar], [Publisher]
[7] Fellowes T., White J.M., Simulating chalcogen bonding using molecular mechanics:a pseudoatom approach to model ebselen. Journal of Molecular Modeling, 2022, 28:66 [Crossref], [Google Scholar], [Publisher]
[8] Galmés B., Juan‐Bals A., Frontera A., Resnati G., Charge‐assisted chalcogen bonds:csd and dft analyses and biological implication in glucosidase inhibitors. Chemistry–A European Journal, 2020, 26:4599 [Crossref], [Google Scholar], [Publisher]
[9] Garrett G.E., Gibson G.L., Straus R.N., Seferos D.S., Taylor M.S., Chalcogen bonding in solution:interactions of benzotelluradiazoles with anionic and uncharged Lewis bases. Journal of the American Chemical Society, 2015, 137:4126 [Crossref], [Google Scholar], [Publisher]
[10] Ito A., Asato M., Asami Y., Fukuda K., Yamasaki R., Okamoto I., Synthesis and Conformational Analysis of N-Aromatic Acetamides Bearing Thiophene:Effect of Intramolecular Chalcogen–Chalcogen Interaction on Amide Conformational Stability. The Journal of Organic Chemistry. 2023, 88:7075 [Crossref], [Google Scholar], [Publisher]
[11] Artemjev A.A., Kubasov A.S., Zaytsev V.P., Borisov A.V., Kritchenkov A.S., Nenajdenko V.G., Gomila R.M., Frontera A, Tskhovrebov A.G., Novel Chalcogen Bond Donors Derived from [3+ 2] Cycloaddition Reaction between 2-Pyridylselenyl Reagents and Isocyanates:Synthesis, Structures and Theoretical Studies. Crystal Growth & Design, 2023, 23:2018 [Crossref], [Google Scholar], [Publisher]
[12] Samuel H.S., Etim E.E., Nweke-Maraizu U., Approaches for Special Characteristics of Chalcogen Bonding:A mini ReviewApplied Organometallic Chemistry, 2023, 3:199 [Crossref], [Google Scholar], [Publisher]
[13] Scheiner S., Various sorts of chalcogen bonds formed by an aromatic system. The Journal of Physical Chemistry A, 2022, 126:4025 [Crossref], [Google Scholar], [Publisher
[14] Scheiner S., Principles guiding the square bonding motif containing a pair of chalcogen bonds between chalcogenadiazoles. The Journal of Physical Chemistry A, 2022, 126:1194 [Crossref], [Google Scholar], [Publisher
[15] Osigbemhe I.G., Louis H., Khan E.M., Etim E.E., Odey D.O., Oviawe A.P., Edet H.O., Obuye, F., Synthesis, characterization, DFT studies, and molecular modeling of 2-(-(2-hydroxy-5-methoxyphenyl)-methylidene)-amino) nicotinic acid against some selected bacterial receptors. Journal of the Iranian Chemical Society, 2022, 19:3561 [Crossref], [Google Scholar], [Publisher
[16] Osigbemhe I.G., Louis H., Khan E.M., Etim E.E., Oyo-Ita E.E., Oviawe A.P., Edet H.O., Obuye F., Antibacterial potential of 2-(-(2-Hydroxyphenyl)-methylidene)-amino) nicotinic Acid:Experimental, DFT Studies, and molecular docking approach. Applied Biochemistry and Biotechnology, 2022, 194:5680 [Crossref], [Google Scholar], [Publisher
[17] Osigbemhe I.G., Oyoita E.E., Louis H., Khan E.M., Etim E.E., Edet H.O., Ikenyirimba O.J., Oviawe A.P., Obuye F., Antibacterial potential of N-(2-furylmethylidene)-1, 3, 4-thiadiazole-2-amine:Experimental and theoretical investigations. Journal of the Indian Chemical Society, 2022, 99:100597 [Crossref], [Google Scholar], [Publisher
[18] Samuel H., Nweke-Maraizu U., Etim E., Experimental and Theoretical Approaches for Characterizing Halogen Bonding, Journal of Applied Organometallic Chemistry, 2023, 3:169 [Crossref], [Publisher]  
[19] Geboes Y., De Vleeschouwer F., De Proft F., Herrebout W.A., Exploiting the σ‐Hole Concept:An Infrared and Raman‐Based Characterization of the S⋅⋅⋅ O Chalcogen Bond between 2, 2, 4, 4‐Tetrafluoro‐1, 3‐dithiethane and Dimethyl Ether. Chemistry–A European Journal, 2017, 23:17384 [Crossref], [Google Scholar], [Publisher
[20] Gougoula E., Moxon J.A., Walker N.R., Legon A.C., A chalcogen-bonded complex (CH3) 3N⋯ SCO characterised by rotational spectroscopy. Chemical Physics Letters, 2020, 743:137177 [Crossref], [Google Scholar], [Publisher]   
[21] Hu Q., Zhao H., Ouyang S., Understanding water structure from Raman spectra of isotopic substitution H2O/D2O up to 573 K. Physical Chemistry Chemical Physics, 2017, 19:21540 [Crossref], [Google Scholar], [Publisher]  
[22] Ito H., Hasegawa T., Tanimura Y., Effects of intermolecular charge transfer in liquid water on Raman spectra. The Journal of Physical Chemistry Letters, 2016, 7:4147 [Crossref], [Google Scholar], [Publisher]  
[23] Begušić T., Blake G.A., Two-dimensional infrared-Raman spectroscopy as a probe of water’s tetrahedrality. Nature Communications, 2023, 14:1950 [Crossref], [Google Scholar], [Publisher]  
[24] Aitipamula S., Vangala V.R., X-ray crystallography and its role in understanding the physicochemical properties of pharmaceutical cocrystals. Journal of the Indian Institute of Science, 2017, 97:227 [Crossref], [Google Scholar], [Publisher]  
[25] Woińska M., Grabowsky S., Dominiak P.M., Woźniak K., Jayatilaka D., Hydrogen atoms can be located accurately and precisely by x-ray crystallography. Science advances, 2016, 2:e1600192 [Crossref], [Google Scholar], [Publisher]  
[26] Adhav V.A., Pananghat B., Saikrishnan K., Probing the Directionality of S··· O/N Chalcogen Bond and Its Interplay with Weak C–H··· O/N/S Hydrogen Bond Using Molecular Electrostatic Potential. The Journal of Physical Chemistry B, 2022, 126:7818 [Crossref], [Google Scholar], [Publisher]
[27] Zhang J., Wang N., Liu W., Zhao X., Lu W., Intermolecular hydrogen bonding strategy to fabricate mechanically strong hydrogels with high elasticity and fatigue resistance. Soft Matter, 2013, 9:6331 [Crossref], [Google Scholar], [Publisher]    
[28] Zhao Z., Wang Y., Chalcogen Bonding Catalysis with Phosphonium Chalcogenide (PCH). Accounts of Chemical Research, 2023, 56:608 [Crossref], [Google Scholar], [Publisher]   
[29] Scheiner S., Various sorts of chalcogen bonds formed by an aromatic system. The Journal of Physical Chemistry A, 2022, 126:4025 [Crossref], [Google Scholar], [Publisher]   
[30] Breugst M., von der Heiden D., Schmauck J., Novel noncovalent interactions in catalysis:a focus on halogen, chalcogen, and anion-π bonding. Synthesis, 2017, 49:3224 [Crossref], [Google Scholar], [Publisher]   
[31] Kumar V., Triglav M., Morin V.M., Bryce, D.L., Predictability of Chalcogen-Bond-Driven Crystal Engineering:An X-ray Diffraction and Selenium-77 Solid-State NMR Investigation of Benzylic Selenocyanate Cocrystals. ACS Organic & Inorganic Au, 2022, 2:252 [Crossref], [Google Scholar], [Publisher]   
[32] Mohammadi M.D., Abdullah H.Y., Louis H., Etim E.E., Edet H.O., Godfrey O.C., Hexachlorobenzene (HCB) adsorption onto the surfaces of C60, C59Si, and C59Ge:Insight from DFT, QTAIM, and NCI. Chemical Physics Impact, 2023, 6:100234 [Crossref], [Google Scholar], [Publisher]   
[33] Erdelyi M., Halogen bonding in solution. Chemical Society Reviews, 2012, 41:3547 [Crossref], [Google Scholar], [Publisher]   
[34] Lim J.Y., Marques I., Félix V., Beer P.D., Chiral halogen and chalcogen bonding receptors for discrimination of stereo-and geometric dicarboxylate isomers in aqueous media. Chemical Communications, 2018, 54:10851 [Crossref], [Google Scholar], [Publisher]   
[35] Robinson S.W., Mustoe C.L., White N.G., Brown A., Thompson A.L., Kennepohl P., Beer P.D., Evidence for halogen bond covalency in acyclic and interlocked halogen-bonding receptor anion recognition. Journal of the American Chemical Society, 2015, 137:499 [Crossref], [Google Scholar], [Publisher]   
[36] Garrett G.E., Carrera E.I., Seferos D.S., Taylor M.S., Anion recognition by a bidentate chalcogen bond donor. Chemical Communications, 2016, 52:9881 [Crossref], [Google Scholar], [Publisher]   
[37] Docker A., Guthrie C.H., Kuhn H., Beer P.D., Modulating Chalcogen Bonding and Halogen Bonding Sigma‐Hole Donor Atom Potency and Selectivity for Halide Anion Recognition. Angewandte Chemie International Edition, 2021, 60:21973 [Crossref], [Google Scholar], [Publisher]   
[38] Bunchuay T., Docker A., Eiamprasert U., Surawatanawong P., Brown A., Beer P.D., Chalcogen Bond Mediated Enhancement of Cooperative Ion‐Pair Recognition. Angewandte Chemie International Edition, 2020, 59:12007
[39] Etim E.E., Gorai P., Ghosh R., Das A., Detectable interstellar anions:Examining the key factors. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2020, 230:118011 [Crossref], [Google Scholar], [Publisher]   
[40] Li G., Xu L., Zhang W., Zhou K., Ding Y., Liu F., He X., He G., Narrow‐Bandgap Chalcogenoviologens for Electrochromism and Visible‐Light‐Driven Hydrogen Evolution. Angewandte Chemie International Edition, 2018, 57:4897 [Crossref], [Google Scholar], [Publisher]   
[41] Park G., Gabbaï F.P., Redox-controlled chalcogen and pnictogen bonding:The case of a sulfonium/stibonium dication as a preanionophore for chloride anion transport. Chemical Science, 2020, 11:10107 [Crossref], [Google Scholar], [Publisher]   
[42] Freire E., Schön A., Velazquez‐Campoy, A., Isothermal titration calorimetry: general formalism using binding polynomials. Methods in enzymology, 2009, 455:127 [Crossref], [Google Scholar], [Publisher]   
[43] Franz D., Inoue S., Advances in the development of complexes that contain a group 13 element chalcogen multiple bond. Dalton Transactions, 2016, 45:9385 [Crossref], [Google Scholar], [Publisher]     
[44] Ho P.C., Wang J.Z., Meloni F., Vargas-Baca I., Chalcogen bonding in materials chemistry. Coordination Chemistry Reviews, 2020, 422:213464 [Crossref], [Google Scholar], [Publisher]    
[45] Huynh H.T., Jeannin O., Aubert E., Espinosa E, Fourmigué M., Chalcogen bonding interactions in chelating, chiral bis (selenocyanates). New Journal of Chemistry, 2021, 45:76 [Crossref], [Google Scholar], [Publisher]    
[46] Ikemoto H., Miyanaga T., Structure study of the chalcogens and chalcogenides by X-ray absorption fine structure. Zeitschrift für Physikalische Chemie, 2021, 235:117 [Crossref], [Google Scholar], [Publisher]    
[47] Setorg S., Investigating the Purposefulness of Relational Marketing on Customer Management in Companies, International Journal of Advanced Studies in Humanities and Social Science, 2023, 12:222 [Crossref], [Publisher]    
[48] Liu M., Han X., Chen H., Peng Q., Huang H., A molecular descriptor of intramolecular noncovalent interaction for regulating optoelectronic properties of organic semiconductors. Nature Communications, 2023, 14:2500 [Crossref], [Google Scholar], [Publisher]    
[49] Aragoni M.C., Arca M., Lippolis V., Pintus A., Torubaev Y., Podda E., A Structural Approach to the Strength Evaluation of Linear Chalcogen Bonds. Molecules, 2023, 28:3133 [Crossref], [Google Scholar], [Publisher]    
[50] Samuel H.S., Etim E.E., Shinggu J.P., Bako B., Machine learning of Rotational spectra analysis in interstellar medium, Communication in Physical Sciences, 2023, 10 [Google Scholar], [Publisher]
[51] Mahmudov K.T., Kopylovich M.N., da Silva M.F.C.G., Pombeiro A.J., Chalcogen bonding in synthesis, catalysis and design of materials. Dalton Transactions, 2017, 46:10121 [Crossref], [Google Scholar], [Publisher]    
[52] Merten C., Recent advances in the application of vibrational circular dichroism spectroscopy for the characterization of asymmetric catalysts. European Journal of Organic Chemistry, 2020, 2020:5892 [Crossref], [Google Scholar], [Publisher]    
[53] Oliveira V., Cremer D., Kraka E., The many facets of chalcogen bonding:Described by vibrational spectroscopy. The Journal of Physical Chemistry A, 2017, 121:6845 [Crossref], [Google Scholar], [Publisher]    
[54] Ma W., Kirchhoff J.L., Strohmann C., Grabe B., Loh C.C., Cooperative Bifurcated Chalcogen Bonding and Hydrogen Bonding as Stereocontrolling Elements for Selective Strain-Release Septanosylation. Journal of the American Chemical Society. 2023, [Crossref], [Google Scholar], [Publisher]    
[55] de Azevedo Santos L., Ramalho T.C., Hamlin T.A., Bickelhaupt F.M., Chalcogen bonds:Hierarchical ab initio benchmark and density functional theory performance study. Journal of Computational Chemistry, 2021, 42:688 [Crossref], [Google Scholar], [Publisher]    
[56] Sauder R., Seelig J., Ziegler A., Thermodynamics of lipid interactions with cell-penetrating peptides. Cell-Penetrating Peptides:Methods and Protocols, 2011, 129 [Crossref], [Google Scholar], [Publisher]    
[57] Burgess M.R., Morley C.P., Electrochemical and NMR spectroscopic studies of selenium-and tellurium-substituted ferrocenes I:ferrocenyl alkyl chalcogenides [Fe(η-C5H5)(η-C5H4ER)]. Journal of Organometallic Chemistry, 2001, 623:101 [Crossref], [Google Scholar], [Publisher]    
[58]  Etim E.E., Mbakara I.E., Khanal G.P., Inyang E.J., Ukafia O.P., Sambo I.F., Coupled Cluster Predictions of Spectroscopic Parameters for (Potential) Interstellar Protonated Species Elixir Computational Chemistry, 2017, 111, 48818 [Crossref], [Google Scholar], [Publisher]
[59] Creste G., Groni S., Fave C., Branca M., Schöllhorn B., Comparative study of non-covalent interactions between cationic N-phenylviologens and halides by electrochemistry and NMR:the halogen bonding effect. Faraday Discussions, 2017, 203:301 [Crossref], [Google Scholar], [Publisher]    
[60] Docker A., Johnson T.G., Kuhn H., Zhang Z., Langton M.J., Multistate Redox-Switchable Ion Transport Using Chalcogen-Bonding Anionophores. Journal of the American Chemical Society, 2023, 145:2661 [Crossref], [Google Scholar], [Publisher]    
[61] Socha  O., Osifová  Z., Dračínský M., NMR-Challenge.com:An Interactive Website with Exercises in Solving Structures from NMR Spectra, Journal of Chemical Education, 2023, 100:962 [Crossref], [Google Scholar], [Publisher]
[62] Kumar V., Xu Y., Bryce D.L., Double Chalcogen Bonds:Crystal Engineering Stratagems via Diffraction and Multinuclear Solid‐State Magnetic Resonance Spectroscopy. Chemistry–A European Journal, 2020, 26:3275 [Crossref], [Google Scholar], [Publisher]
[63] Vogel  L., Wonner  P., Huber S.M., Chalcogen bonding:An overview, Angewandte Chemie International Edition, 2019, 58:1880 [Crossref], [Google Scholar], [Publisher]
[64] Nakajima M., Nemoto T., Machine learning enabling prediction of the bond dissociation enthalpy of hypervalent iodine from SMILES, Scientific Reports, 2021, 11:20207 [Crossref], [Google Scholar], [Publisher]
[65] Takamura A., Tsukamoto K., Sakata K., Integrative measurement analysis via machine learning descriptor selection for investigating physical properties of biopolymers in hairs. Sci Rep 2021, 11:24359 [Crossref], [Google Scholar], [Publisher]
[66] Bayon A., de la Calle A., Ghose K.K., Page A., McNaughton R., Experimental, computational and thermodynamic studies in perovskites metal oxides for thermochemical fuel production:A review, International Journal of Hydrogen Energy, 2020, 45:12653 [Crossref], [Google Scholar], [Publisher]
[67] Klarić M., Kuzle I., Holjevac N., Wind power monitoring and control based on synchrophasor measurement data mining, Energies, 2018, 11:3525 [Crossref], [Google Scholar], [Publisher]
[68] Esparza  A., Segundo J., Nuñez C., Visairo N., Barocio E., García  H., Transient stability enhancement using a wide-area controlled SVC:An HIL validation approach,  Energies, 2018, 11:1639 [Crossref], [Google Scholar], [Publisher]
[69] Ivanković I., Kuzle I., Holjevac N., Algorithm for fast and efficient detection and reaction to angle instability conditions using phasor measurement unit data, Energies, 2018, 11:681 [Crossref], [Google Scholar], [Publisher]
[70] Wang  X., Shi D., Wang Z., Xu C., Zhang Q., Zhang, X., Yu Z., Online calibration of phasor measurement unit using density-based spatial clustering, IEEE Transactions on Power Delivery, 2017, 33:1081 [Crossref], [Google Scholar], [Publisher]
[71] Ester M., Kriegel H.P., Sander J., Xu X., August. A density-based algorithm for discovering clusters in large spatial databases with noise. In kdd , 1996, 96:226 [Google Scholar], [Publisher]
[72] Bakshi B.R., Multiscale PCA with application to multivariate statistical process monitoring, AIChE journal, 1998, 44:1596[Crossref], [Google Scholar], [Publisher]
[73] Carugo O., Resnati G., Metrangolo P., Chalcogen bonds involving selenium in protein structures, ACS chemical biology, 2021, 16:1622 [Crossref], [Google Scholar], [Publisher]
[74] Pina M.D.L.N., Frontera A., Bauza A., Charge Assisted S/Se Chalcogen Bonds in SAM Riboswitches:A Combined PDB and ab Initio Study, ACS chemical biology, 2021, 16:1701[Crossref], [Google Scholar], [Publisher]
[75] Zeng R., Gong  Z., Chen L., Yan Q., Solution self-assembly of chalcogen-bonding polymer partners, ACS Macro Letters, 2020, 9:1102 [Crossref], [Google Scholar], [Publisher]
[76] Zeng R., Gong Z., Yan Q., Chalcogen-Bonding Supramolecular Polymers. The Journal of Organic Chemistry, 2020, 85:8397 [Crossref], [Google Scholar], [Publisher]
[77] Skiba M.A., Sikkema A.P., Moss N.A., Lowell A.N., Su M., Sturgis R.M., Gerwick L., Gerwick W.H., Sherman D.H., Smith J.L., Biosynthesis of t-butyl in apratoxin A:Functional analysis and architecture of a PKS loading module, ACS chemical biology, 2018, 13:1640 [Crossref], [Google Scholar], [Publisher]
[78] Chen L., Xiang J., Zhao Y., Yan Q., Reversible self-assembly of supramolecular vesicles and nanofibers driven by chalcogen-bonding interactions, Journal of the American Chemical Society, 2018, 140:7079 [Crossref], [Google Scholar], [Publisher]
[79] Ghasemi S.S., A Mini Review of Social Semiotic and Critical Visual Studies in Language-Related Fields of Study', International Journal of Advanced Studies in Humanities and Social Science, 2023,  12:268 [Crossref], [Publisher]
[80] Rahimipour S., Poetry and Drama: A Survey of Their Applicability to Language Teaching/Learning', International Journal of Advanced Studies in Humanities and Social Science, 2020, 9:59  [Crossref], [Publisher]
[81] Scheiner S., Assembly of effective halide receptors from components. Comparing hydrogen, halogen, and tetrel bonds, The Journal of Physical Chemistry A, 2017, 121:3606 [Crossref], [Google Scholar], [Publisher]
[82] Joy J., Jemmis E.D., Contrasting behavior of the Z bonds in X–Z··· Y weak interactions:Z= main group elements versus the transition metals, Inorganic Chemistry, 2017, 56:1132 [Crossref], [Google Scholar], [Publisher]
[83] Stefano M., Riccardo A., Valentina M., Lorenzo T., Gabriella C., Caterina V., Role of Noncovalent Sulfur··· Oxygen Interactions in Phenoxyl Radical Stabilization:Synthesis of Super Tocopherol-like Antioxidants, 2016 [Crossref], [Google Scholar], [Publisher]
[84] Dar’in Dmitry V., Yu K.V., Difference in Energy between Two Distinct Types of Chalcogen Bonds Drives Regioisomerization of Binuclear (Diaminocarbene) PdII Complexes, 2016 [Crossref], [Google Scholar], [Publisher]
[85] Artemjev A.A., Kubasov A.S., Kuznetsov M.L., Grudova M.V., Khrustalev V.N., Kritchenkov A.S., Tskhovrebov A.G., Mechanistic investigation of 1, 3-dipolar cycloaddition between bifunctional 2-pyridylselenyl reagents and nitriles including reactions with cyanamides, CrystEngComm, 2023, 25:3691[Crossref], [Google Scholar], [Publisher]
[86] Amonov A., Scheiner S., Comparison of the Ability of N‐Bases to Engage in Noncovalent Bonds, ChemPhysChem, 2023,  202300326. [Crossref], [Google Scholar], [Publisher]
[87] Pizzi  A., Daolio A., Beccaria  R., Demitri  N., Viani  F., Resnati G., Chalcogen Bonding (ChB) as a Robust Supramolecular Recognition Motif of Benzisothiazolinone Antibacterials,  Chemistry–A European Journal, 2023, 29 :202300571  [Crossref], [Google Scholar], [Publisher]
[88] Popov R.A., Novikov A.S., Suslonov V.V., Boyarskiy V.P., Molecular Switching through Chalcogen-Bond-Induced Isomerization of Binuclear (Diaminocarbene) PdII Complexes, Inorganics, 2023, 11:255 [Crossref], [Google Scholar], [Publisher]
[89] Scheiner S., Competition Between the Two σ‐Holes in the Formation of a Chalcogen Bond, ChemPhysChem, 2023, 24:202200936 [Crossref], [Google Scholar], [Publisher]
[90] Scheiner  S., Assessing the Possibility and Properties of Types I and II Chalcogen Bonds,  Crystals, 2023, 13:766 [Crossref], [Google Scholar], [Publisher]
[91] Walker M.G., Mendez C.G., Ho P.S., Non‐classical Non‐covalent σ‐Hole Interactions in Protein Structure and Function:Concepts for Potential Protein Engineering Applications, Chemistry–An Asian Journal, 2023, 18:202300026 [Crossref], [Google Scholar], [Publisher]
[92] Carugo O., Interplay between hydrogen and chalcogen bonds in cysteine. Proteins:Structure, Function, and Bioinformatics, 2023, 91:395-399 [Crossref], [Google Scholar], [Publisher]
[93] Kolb S., Oliver  G.A., Werz D.B., Chalcogen bonding in supramolecular structures, anion recognition, and catalysis, 2023 [Crossref], [Google Scholar], [Publisher]
[94] Lee L.M., Tsemperouli M., Poblador-Bahamonde A.I., Benz S., Sakai N., Sugihara K., Matile S., Anion transport with pnictogen bonds in direct comparison with chalcogen and halogen bonds, Journal of the American Chemical Society, 2019, 141:810 [Crossref], [Google Scholar], [Publisher]
[95] Benz S., Macchione M., Verolet Q., Mareda J., Sakai N., Matile S., Anion transport with chalcogen bonds,  Journal of the American Chemical Society, 2016, 138:9093 [Crossref], [Google Scholar], [Publisher]
[96] Geng H., Chen F., Ye J., Jiang F., Applications of molecular dynamics simulation in structure prediction of peptides and proteins, Computational and structural biotechnology journal, 2019,  17:1162 [Crossref], [Google Scholar], [Publisher]
[97] Mihalovits L.M., Ferenczy G.G., Keserű G.M., Mechanistic and thermodynamic characterization of oxathiazolones as potent and selective covalent immunoproteasome inhibitors, Computational and Structural Biotechnology Journal, 2021, 19:4486 [Crossref], [Google Scholar], [Publisher]
[98] Mihalovits L.M., Ferenczy G.G., Keserű G.M., Affinity and selectivity assessment of covalent inhibitors by free energy calculations, Journal of Chemical Information and Modeling, 2020, 60:6579 [Crossref], [Google Scholar], [Publisher]
[99] Pyziak M., Pyziak J., Hoffmann M., Kubicki M., Experimental and Theoretical Charge Density Studies of Chalcogen Bonding and Other Intermolecular Contacts in 4-[[4-(Methoxy)-3-quinolinyl] thio]-3-thiomethylquinoline, Crystal Growth & Design, 2015, 15:5223 [Crossref], [Google Scholar], [Publisher]
[100] Steve S., Interactions between Thiourea and Imines. Prelude to Catalysis, 2015 [Crossref], [Google Scholar], [Publisher]
[101] Uhl W., Wegener P., Layh M., Hepp A.,  Würthwein E.U., Chalcogen capture by an Al/P-based frustrated lewis pair:Formation of Al-EP bridges and intermolecular tellurium–tellurium interactions,  Organometallics, 2015, 34:2455 Crossref], [Google Scholar], [Publisher]
[102] Nziko V.D.P.N., Scheiner S., S··· π Chalcogen bonds between SF2 or SF4 and C–C multiple bonds, The Journal of Physical Chemistry A, 2015, 119:5889 [Crossref], [Google Scholar], [Publisher]
[103] Guo X., An X., Li Q., Se··· N Chalcogen Bond and Se··· X Halogen Bond Involving F2C Se:Influence of Hybridization, Substitution, and Cooperativity,  The Journal of Physical Chemistry A, 2015, 119:3518 [Crossref], [Google Scholar], [Publisher]
[104] Garrett G.E., Gibson G.L., Straus R.N., Seferos D.S.,  Taylor M.S., Chalcogen bonding in solution:interactions of benzotelluradiazoles with anionic and uncharged Lewis bases,  Journal of the American Chemical Society, 2015, 137:4126 [Crossref], [Google Scholar], [Publisher]
[105] Setiawan D., Kraka E., Cremer D., Strength of the pnicogen bond in complexes involving group Va elements N, P, and As, The Journal of Physical Chemistry A, 2015, 119:1642 [Crossref], [Google Scholar], [Publisher]
[106] Steve S., Intramolecular S··· O Chalcogen Bond as Stabilizing Factor in Geometry of Substituted Phenyl-SF3 Molecules, 2015 [Crossref], [Google Scholar], [Publisher]
[107] Azofra L.M., Alkorta I., Scheiner S., Chalcogen bonds in complexes of SOXY (X, Y= F, Cl) with nitrogen bases, The Journal of Physical Chemistry A, 2015, 119:535 [Crossref], [Google Scholar], [Publisher]
[108] Nziko V.D.P.N., Scheiner S., Chalcogen bonding between tetravalent SF4 and amines, The Journal of Physical Chemistry A, 2014, 118:10849 [Crossref], [Google Scholar], [Publisher]
[109] Guan L., Mo Y., Electron transfer in pnicogen bonds, The Journal of Physical Chemistry A, 2014, 118:8911 [Crossref], [Google Scholar], [Publisher]
[110] Rolf G.,  Gebhard H., Long Chalcogen–Chalcogen Bonds in Electron-Rich Two and Four Center Bonds:Combination of π-and σ-Aromaticity to a Three-Dimensional σ/π-Aromaticity, 2014 [Crossref], [Google Scholar], [Publisher]
[111] Azofra L.M., Scheiner S.,. Substituent effects in the noncovalent bonding of SO2 to molecules containing a carbonyl group. The dominating role of the chalcogen bond, The Journal of Physical Chemistry A, 2014, 118:3835 [Crossref], [Google Scholar], [Publisher]
[112] Adhikari U., Scheiner S., Effects of charge and substituent on the S··· N chalcogen bond, The Journal of Physical Chemistry A, 2014, 118:3183 [Crossref], [Google Scholar], [Publisher]
[113] Felix-Sonda B.C., Rivera-Islas J., Herrera-Ruiz D., Morales-Rojas H., Höpfl H., Nitazoxanide cocrystals in combination with succinic, glutaric, and 2, 5-dihydroxybenzoic acid, Crystal growth & design, 2014, 14:1086 [Crossref], [Google Scholar], [Publisher]
[114] Putta A., Mottishaw J.D., Wang Z., Sun H., Rational design of lamellar π–π stacked organic crystalline materials with short interplanar distance, Crystal growth & design, 2014,  14:350 [Crossref], [Google Scholar], [Publisher]
[115] Xiao  Q., Sakurai T., Fukino T., Akaike K., Honsho Y., Saeki A., Seki S., Kato K., Takata M., Aida T., Propeller-shaped fused oligothiophenes:a remarkable effect of the topology of sulfur atoms on columnar stacking, Journal of the American Chemical Society, 2013, 135:18268 [Crossref], [Google Scholar], [Publisher]
[116] Bauza A., Alkorta I., Frontera A., Elguero J., On the reliability of pure and hybrid DFT methods for the evaluation of halogen, chalcogen, and pnicogen bonds involving anionic and neutral electron donors,  Journal of chemical theory and computation, 2013, 9:5201 [Crossref], [Google Scholar], [Publisher]
[117] Fick  R.J., Kroner G.M., Nepal B., Magnani R., Horowitz S., Houtz R.L., Scheiner S., Trievel R.C., Sulfur–oxygen chalcogen bonding mediates adomet recognition in the lysine methyltransferase SET7/9,  ACS chemical biology, 2016, 11:748 [Crossref], [Google Scholar], [Publisher]
[118] Wang W., Ji B., Zhang Y., Chalcogen bond:a sister noncovalent bond to halogen bond, The Journal of Physical Chemistry A, 2009, 113:8132 [Crossref], [Google Scholar], [Publisher]
[119] Seiji T., Naoki S., Origin of Attraction in Chalgogen–Nitrogen Interaction of 1, 2, 5-Chalcogenadiazole Dimers, 2013 [Crossref], [Google Scholar], [Publisher]
[120] Kozuch S., Martin J.M., Halogen bonds:Benchmarks and theoretical analysis,  Journal of Chemical Theory and Computation, 2013, 9:1918 [Crossref], [Google Scholar], [Publisher]
[121] Knight F.R., Randall R.A., Athukorala Arachchige K.S., Wakefield L., Griffin J.M., Ashbrook S.E., Bühl M., Slawin A.M., Woollins J.D., Noncovalent interactions in peri-substituted chalconium acenaphthene and naphthalene salts:a combined experimental, crystallographic, computational, and solid-state NMR study,  Inorganic Chemistry, 2012, 51:11087 [Crossref], [Google Scholar], [Publisher]
[122] Mukherjee G., Singh P., Ganguri C., Sharma S., Singh H.B., Goel N., Singh U.P., Butcher R.J., Selenadiazolopyridine:A synthon for supramolecular assembly and complexes with metallophilic interactions, Inorganic Chemistry, 2012, 51:8128 [Crossref], [Google Scholar], [Publisher]
[123] Lechner M.L., Athukorala Arachchige K.S., Randall R.A., Knight F.R., Bühl M., Slawin A.M., Woollins J.D., Sterically crowded tin acenaphthenes, Organometallics, 2012, 31:2922 [Crossref], [Google Scholar], [Publisher]
[124] Zhu  L., Yang  W., Meng  Y.Y., Xiao  X., Guo Y., Pu X.,  Li  M., Effects of organic solvent and crystal water on γ-chymotrypsin in acetonitrile media:observations from molecular dynamics simulation and DFT calculation,  The Journal of Physical Chemistry B, 2012, 116:3292[Crossref], [Google Scholar], [Publisher]
[125] Scheiner S., Adhikari U., Abilities of different electron donors (D) to engage in a P··· D noncovalent interaction. The Journal of Physical Chemistry A, 2011, 115:11101 [Crossref], [Google Scholar], [Publisher]
[126] Biot N., Bonifazi D., Chalcogen-bond driven molecular recognition at work, Coordination Chemistry Reviews, 2020, 413:213243 [Crossref], [Google Scholar], [Publisher]
[127] Bleiholder C., Gleiter R., Werz D.B., Köppel H., Theoretical investigations on heteronuclear chalcogen− chalcogen interactions:on the nature of weak bonds between chalcogen centers,  Inorganic Chemistry, 2007, 46:2249 [Crossref], [Google Scholar], [Publisher]