h-index: 7     i10-index: 5

Document Type : Mini-Review

Author

Young Researchers and Elite Club, Ardabil Branch, Islamic Azad University, Ardabil, Iran

Abstract

Understanding the beginning of life on planet Earth has always been a captivating and scientifically very important and dynamic topic. The purpose of this study is to provide a concise review of some issuesrelated to the origin of life (OoL) on early Earth and stimulate further research into this important area of science. This brief review highlights the significance of the primordial soup as a nutrient-rich chemical mix in Earth's early oceans, and the Stanley Miller and Harold Urey experiment. Furthermore, it provides a brief description of the fundamental building blocks of life, such as lipids, nucleic acids (deoxyribonucleic acid (DNA) and ribonucleic acid (RNA)), proteins, and the role of entropy in chemical evolution. The results indicated that our understanding of the OoL continues to advance through interdisciplinary research and innovative experiments. As scientists delve deeper into the origins of life, we can anticipate further breakthroughs that will deepen our understanding of our own existence and the possibilities of life beyond Earth.

Keywords

Main Subjects

[1] Pross A., Pascal R., The origin of life: What we know, what we can know and what we will never know, Open biology, 2013, 3:120190 [Crossref], [Google Scholar], [Publisher]
[2] Walker S.I., Davies P.C., The algorithmic origins of life, Journal of the Royal Society Interface, 2013, 10:20120869 [Crossref], [Google Scholar], [Publisher]
[3] Vojood A., NaghizadehBaghi D., KhodadadiMoghaddam M., Ebrahimzadeh-Rajaei G., The origin of life on the planet earth in the perspective of the holy quran and chemistry, The Quran and Science Studies., 2021, 9: 58 [Google Scholar], [Publisher]
[4] Pérez-Villa A., Pietrucci F., Saitta A.M., Prebiotic chemistry and origins of life research with atomistic computer simulations, Physics of life reviews, 2020, 34:105 [Crossref], [Google Scholar], [Publisher]
[5] Preiner M., Asche S., Becker S., Betts H.C., Boniface A., Camprubi E., Chandru K., Erastova V., Garg S.G., Khawaja N., The future of origin of life research: Bridging decades-old divisions, Life, 2020, 10:20 [Crossref], [Google Scholar], [Publisher]
[6] Jeancolas C., Malaterre C., Nghe P., Thresholds in origin of life scenarios, Iscience, 2020, 23:101756 [Crossref], [Google Scholar], [Publisher]
 [7] Mariscal C., Barahona A., Aubert-Kato N., Aydinoglu A.U., Bartlett S., Cárdenas M.L., Chandru K., Cleland C., Cocanougher B.T., Comfort N., Cornish-Bowden A., Deacon T., Froese T., Giovannelli D.,  Hernlund J., Hut P., Kimura J., Maurel M.C., Merino N., Moreno A., Nakagawa M., Peretó J., Virgo N., Witkowski O., Cleaves II H.J., Hidden concepts in the history and philosophy of origins-of-life studies: A workshop report, Origins of Life and Evolution of Biospheres, 2019, 49:111 [Crossref], [Google Scholar], [Publisher]
[8] Pross A., What is life? how chemistry becomes biology, Oxford University Press, 2016 [Google Scholar], [Publisher]
[9] Vojood A., Khodadadi-Moghaddam, M., Ebrahimzadeh-Rajaei, G., Mohajeri, S., Shamel, A., Increasing in the selectivity of formose reaction for glyceraldehyde production in the presence of fumed silica and montmorillonite catalysts, Chemical Methodologies, 2021, 5:422 [Crossref], [Google Scholar], [Publisher]
[10] Szathmáry E., Santos M., Fernando C., Evolutionary potential and requirements for minimal protocells, in: Walde, P. (Ed), Prebiotic chemistry from simple amphiphiles to protocell models. Springer., Heidelberg, 2005 [Crossref], [Google Scholar], [Publisher]
[11] Fry I., The role of natural selection in the origin of life, Origins of Life and Evolution of Biospheres, 2011, 41:3 [Crossref], [Google Scholar], [Publisher]
[12] Michaelian K., The Non-equilibrium Thermodynamics of Natural Selection: From Molecules to the Biosphere, 2023, 25:1059 [Crossref], [Google Scholar], [Publisher]
[13] Balbi A., Lingam M., Beyond mediocrity: How common is life?, Monthly Notices of the Royal Astronomical Society, 2023, 522:3117 [Crossref], [Google Scholar], [Publisher]
[14] Bergman J., Why abiogenesis is impossible, Creation Research Society Quarterly, 2000, 36:195 [Google Scholar], [Publisher]
[15] Pavlinova P., Lambert C.N., Malaterre C.,Nghe P., Abiogenesis through gradual evolution of autocatalysis into template‐based replication, FEBS letters, 2023, 597:344 [Crossref], [Google Scholar], [Publisher]
[16] Trifonov E., Lane N., Freeland S., Russell M., Abiogenesis and the origins of life; 1st. Ed. Cosmology Science Publishers, 2011 [Publisher]
[17] Vojood A., Khodadadi-Moghaddam, M., Ebrahimzadeh-Rajaei, G., Mohajeri, S., Shamel, A., Origin of life: The role of formose reaction in the synthesis of carbohydrates, Juarrerly of Education in Basic Science, 2021, 7:48 [Crossref], [Google Scholar], [Publisher]
[18] Das B., Origin of life on earth, in: Bhattacharya, N. (Ed), Book the history and philosophy of science, 1st. Ed. Taylor & Francis., London, 2022 [Crossref], [Publisher]
 
 [19] Jortner J., Conditions for the emergence of life on the early Earth: Summary and reflections, Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361:1877 [Crossref], [Google Scholar], [Publisher]
[20] Ranjan S., Todd Z.R., Sutherland J.D., Sasselov D.D., Sulfidic anion concentrations on early earth for surficial origins-of-life chemistry, Astrobiology, 2018, 18:1023 [Crossref], [Google Scholar], [Publisher]
[21] Joseph A., Beginnings of life on earth, in:  Joseph, A. (Ed), Water worlds in the solar system. Elsevier., Amsterdam, 2023 [Crossref], [Google Scholar], [Publisher]
[22] Parrilli E., Sannino F., Marino G., Tutino M.L., Life in icy habitats: New insights supporting panspermia theory, RendicontiLincei, 2011, 22:375 [Crossref], [Google Scholar], [Publisher]
[23] Deamer D., The role of lipid membranes in life’s origin, Life, 2017, 7:5 [Crossref], [Google Scholar], [Publisher]
[24] Joseph A., Seafloor hot chimneys and cold seeps: mysterious life around them, in: Joseph, A. (Ed), Investigating seafloors and oceans. Elsevier., Amsterdam, 2017 [Crossref], [Google Scholar], [Publisher]
[25] D.P. Clark, N.J. Pazdernik, M.R., McGehee. Molecular biology; 3rd. Ed. Academic Cell, 2019
[26] Schuster P., Stadler P.F., Early replicons: origin and evolution, in: Domingo, E., Parrish, C.R., Holland, J.J. (Eds), Origin and evolution of viruses, 7th. Ed. Elsevier., Amsterdam, 2008 [Crossref], [Google Scholar], [Publisher]
[27] Krishnamurthy R., Hud N.V., Introduction: Chemical evolution and the origins of life, Chemical Reviews, 2020, 120:4613 [Crossref], [Google Scholar], [Publisher]
[28] Schopf J.W., Life's origin: the beginnings of biological evolution, University of California Press, 2002 [Google Scholar], [Publisher]
[29] Camprubi E., De Leeuw J., House C., Raulin F., Russell M., Spang A., Tirumalai M., Westall F., The emergence of life, Space Science Reviews, 2019, 215:1 [Crossref], [Google Scholar], [Publisher]
[30] Lazcano A., Primordial soup, in: Gargaud, M., Irvine, W.M., Amils, R., Cleaves, H.J., Pinti, D.L., Quintanilla, J.C., Rouan, D., Spohn, T., Tirard, S., Viso, M. (Eds), Encyclopedia of astrobiology. Springer., Heidelberg, 2015 [Crossref], [Google Scholar], [Publisher]
[31] Walde P., Boiteau L., Chemistry and physics of primitive membranes, in: Walde, P. (Ed), Prebiotic chemistry from simple amphiphiles to protocell models. Springer., Heidelberg, 2005 [Crossref], [Google Scholar], [Publisher]
[32] Khodadadi-Moghaddam M., Molecular dynamics simulation of anionic pentaglycine at water–pyrite interface, Monatshefte für Chemie-Chemical Monthly, 2017, 148:967 [Crossref], [Google Scholar], [Publisher]
[33] Parker E.T., Cleaves J.H., Burton A.S., Glavin D.P., Dworkin J.P., Zhou M., Bada J.L., Fernández F.M., Conducting miller-urey experiments, JoVE (Journal of Visualized Experiments), 2014, 21: 51039 [Crossref], [Google Scholar], [Publisher]
[34] Vaneechoutte M., Fani R., From the primordial soup to the latest universal common ancestor, Research in Microbiology, 2009, 160:437 [Crossref], [Google Scholar], [Publisher]
[35] Abe Y., Physical state of the very early Earth, Lithos, 1993, 30:223 [Crossref], [Google Scholar], [Publisher]
[36] Santosh M., Arai T., Maruyama S., Hadean Earth and primordial continents: the cradle of prebiotic life, Geoscience Frontiers, 2017, 8:309 [Crossref], [Google Scholar], [Publisher]
[37] Hazen R.M., The story of earth: the first 4.5 billion years, from stardust to living planet, Penguin Press, 2013 [Google Scholar], [Publisher]
[38] Vojood A., KhodadadiMoghaddam, M., EbrahimzadehRajaei, G., Mohajeri, S.,Shamel, A., Prebiotic synthesis of sugar and molecular dynamic simulation of 2, 3-dihydroxypropanal adsorption on montmorillonite, Iranian Journal of Chemistry and Chemical Engineering, 2022, 41: 3433 [Crossref], [Google Scholar], [Publisher]
[39] Shibaei N., A review on biological analysis of of darwin's evolutionary theory on the origin of cellular life on earth, Journal of Animal Biology, 2023, 15:1 [Crossref], [Google Scholar], [Publisher]
[40] Kargel J.S., Kaye J.Z., Head III J.W., Marion G.M., Sassen R., Crowley J.K., Ballesteros O.P., Grant S.A., Hogenboom D.L., Europa's crust and ocean: Origin, composition, and the prospects for life, Icarus, 2000, 148:226 [Crossref], [Google Scholar], [Publisher]
[41] Martin W., Baross J., Kelley D., Russell M.J., Hydrothermal vents and the origin of life, Nature Reviews Microbiology, 2008, 6:805 [Crossref], [Google Scholar], [Publisher]
[42] Vincent L., Colón-Santos S., Cleaves H.J., Baum D.A., Maurer S.E., The prebiotic kitchen: A guide to composing prebiotic soup recipes to test origins of life hypotheses, Life, 2021, 11:1221 [Crossref], [Google Scholar], [Publisher]
[43] Shaw G.H., Earth's early atmosphere and oceans, and the origin of Life; 1st. Ed. Springer, 2015 [Crossref], [Google Scholar], [Publisher]
[44] Pasek M.A., Gull M.,Herschy B., Phosphorylation on the early earth, Chemical Geology, 2017, 475:149 [Crossref], [Google Scholar], [Publisher]
[45] Deamer D.W., Origin of life: what everyone needs to know®, Oxford University Press, 2020 [Crossref], [Google Scholar], [Publisher]
[46] Criado-Reyes J., Bizzarri B.M., García-Ruiz J.M., Saladino R., Di Mauro E., The role of borosilicate glass in Miller–Urey experiment, Scientific Reports, 2021, 11:21009 [Crossref], [Google Scholar], [Publisher]
[47] Miller S.L., A production of amino acids under possible primitive earth conditions, Science, 1953, 117:528 [Crossref], [Google Scholar], [Publisher]
[48] Bada J.L., Lazcano A., Prebiotic soup--revisiting the miller experiment, Science, 2003, 300:745 [Crossref], [Google Scholar], [Publisher]
[49] Buxbaum E., Fundamentals of protein structure and function; 2nd. Ed.  Springer, 2007 [Crossref], [Google Scholar], [Publisher]
[50] Blackburn G.M., Egli M., Gait M.J., Watts J.K., Nucleic acids in chemistry and biology; 4th. Ed. Royal Society of Chemistry, 2022 [Google Scholar], [Publisher]
[51] Seckbach J., Origins: genesis, evolution and diversity of life; 1st. Ed. Springer, 2006 [Crossref], [Google Scholar], [Publisher]
[52] Lazcano A., Prebiotic evolution and self-assembly of nucleic acids, ACS nano, 2018, 12:9643 [Crossref], [Google Scholar], [Publisher]
[53] Burgos J., A knowledge representation of the Miller-Urey experiment, Preprints, 2020, 2020100161 [Crossref], [Google Scholar], [Publisher]
[54] Das A., The origin of life on earth-viruses and microbes, Acta Scientific Microbiology, 2019, 2: 22 [Google Scholar], [Publisher]
[55] Nakazawa H., Darwinian evolution of molecules: physical and earth-historical perspective of the origin of life; 1st. Ed. Springer, 2019 [Crossref], [Google Scholar], [Publisher]
[56] Deamer D., The role of lipid membranes in life’s origin, Life, 2017, 7:5 [Crossref], [Google Scholar], [Publisher]
[57] Lancet D., Zidovetzki R.,Markovitch O., Systems protobiology: Origin of life in lipid catalytic networks, Journal of the Royal Society Interface, 2018, 15:20180159 [Crossref], [Google Scholar], [Publisher]
[58] Hertog T., On the origin of time: Stephen hawking's final theory, Bantam, 2023 [Google Scholar], [Publisher]
[59] Grover M.A., He C.Y., Hsieh M.C., Yu S.S., A chemical engineering perspective on the origins of life, Processes, 2015, 3:309 [Crossref], [Google Scholar], [Publisher]
[60] Santos T.C., Futerman A.H., The fats of the matter: Lipids in prebiotic chemistry and in origin of life studies, Progress in Lipid Research, 2023, 92:101253 [Crossref], [Google Scholar], [Publisher]
[61] Joyce G.F., RNA evolution and the origins of life, Nature, 1989, 338:217 [Crossref], [Google Scholar], [Publisher]
[62] Saladino R., Crestini C., Costanzo G., DiMauro E., On the prebiotic synthesis of nucleobases, nucleotides, oligonucleotides, pre-RNA and pre-DNA molecules, in: Walde, P. (Ed), Prebiotic chemistry from simple amphiphiles to protocell models. Springer., Heidelberg, 2005 [Crossref], [Google Scholar], [Publisher]
[63] Orgel L., A simpler nucleic acid, Science, 2000, 290:1306 [Crossref], [Google Scholar], [Publisher]
[64] Higgs P.G., Lehman N., The rNA world: molecular cooperation at the origins of life, Nature Reviews Genetics, 2015, 16:7 [Crossref], [Google Scholar], [Publisher]
[65] Hashizume H., Role of clay minerals in chemical evolution and the origins of life, in: Valaskova, M., Martynkova, G.S. (Eds). Clay minerals in nature-their characterization, Modification and application. Intechopen., London, 2012 [Crossref], [Google Scholar], [Publisher]
[66] Brack A., in Developments in Clay Science, Elsevier, 2013, 5:507 [Crossref], [Google Scholar], [Publisher]
[67] Kloprogge J.T., Hartman H., Clays and the origin of life: The experiments, Life, 2022, 12:259 [Crossref], [Google Scholar], [Publisher]
[68] Pearce B.K., Pudritz R.E., Semenov D.A., Henning T.K., Origin of the RNA world: The fate of nucleobases in warm little ponds, Proceedings of the National Academy of Sciences, 2017, 114:11327 [Crossref], [Google Scholar], [Publisher]
[69] Lanier K.A., Williams L.D., The origin of life: Models and data, Journal of molecular evolution, 2017, 84:85 [Crossref], [Google Scholar], [Publisher]
[70] Menor-Salván C., From the dawn of organic chemistry to astrobiology: urea as a foundational component in the origin of nucleobases and nucleotides, in: Salván, C.M. (Ed). Prebiotic chemistry and chemical evolution of nucleic acids. Springer., Heidelberg, 2018 [Crossref], [Google Scholar], [Publisher]
[71] Pascal R., Boiteau L.,Commeyras A., From the prebiotic synthesis of α-amino acids towards a primitive translation apparatus for the synthesis of peptides, in: Walde, P. (Ed), Prebiotic chemistry from simple amphiphiles to protocell models. Springer., Heidelberg, 2005 [Crossref], [Google Scholar], [Publisher]
[72] Bischoff R., Schlüter H., Amino acids: chemistry, functionality and selected non-enzymatic post-translational modifications, Journal of proteomics, 2012, 75:2275 [Crossref], [Google Scholar], [Publisher]
[73] Ahluwalia V., Kumar L.S., Chemistry of natural products, amino acids, peptides, proteins and znzymes; 1st. ed. Springer Cham, 2006 [Google Scholar], [Publisher]
[74] Brack A., Early proteins, in: Greenberg, J.M., Mendoza-Gómez, C.X., Pirronello, V. (Eds). The chemistry of life’s origins, 1st. Ed. Springer., Heidelberg, 2012 [Crossref], [Google Scholar], [Publisher]
[75] Kessel A., Ben-Tal N., Introduction to proteins: structure, function, and motion; 2nd. Ed.  Chapman and Hall/CRC Press, 2018 [Crossref], [Google Scholar], [Publisher]
[76] Luisi P.L., An open question on the origin of life: The first forms of metabolism, Chemistry & Biodiversity, 2012, 9:2635 [Crossref], [Google Scholar], [Publisher]
[77] Eschenmoser A., The search for the chemistry of life's origin, Tetrahedron, 2007, 63:12821 [Crossref], [Google Scholar], [Publisher]
[78] Fry I., The emergence of life on Earth: a historical and scientific overview, Rutgers University Press, 2000 [Google Scholar], [Publisher]
[79] Cottam R., Ranson W., Vounckx R., Life and simple systems, Systems Research and Behavioral Science, 2005, 22:413 [Crossref], [Google Scholar], [Publisher]
[80] Ikehara K., How did life emerge in chemically complex messy environments?, Life, 2022, 12:1319 [Crossref], [Google Scholar], [Publisher]
[81] Pascal R., Boiteau L., Forterre P., Gargaud M., Lazcano A., Lopez-Garcia P., Maurel M.C., Moreira D., Pereto J., Prieur D., Reisse, J., Prebiotic chemistry—biochemistry—emergence of life (4.4-2 Ga), in: Gargaud, M., Claeys, P., López-García, P., Martin, H., Montmerle, T., Pascal, R., Reisse, J. (Eds), From suns to life: A chronological approach to the history of life on earth. Springer., New York, 2006 [Crossref], [Google Scholar], [Publisher]
[82] Greven A., Keller G.,Warnecke G., Entropy, Princeton University Press, 2014 [Google Scholar], [Publisher]
[83] Lemons D.S., Lemons D.S., A student's guide to entropy; 1st. Ed.  Cambridge university press, 2013 [Crossref], [Google Scholar], [Publisher]
[84] Michaelian K., Entropy production and the origin of life, Journal of Modern Physics, 2011, 2:595 [Crossref], [Google Scholar], [Publisher]
[85] Jumaev E., Hong, S.H., Kim, J.T., Park, H.J., Kim, Y.S., Mun, S.C., Park, J.-Y., Song, G., Lee, J.K., Min, B.H., Chemical evolution-induced strengthening on AlCoCrNi dual-phase high-entropy alloy with high specific strength, Journal of Alloys and Compounds, 2019, 777:828 [Crossref], [Google Scholar], [Publisher]
[86] Michaelian K., Non-equilibrium thermodynamic foundations of the origin of life, Foundations, 2022, 2:308 [Crossref], [Google Scholar], [Publisher]
[87] Vanchurin V., Wolf Y.I., Koonin E.V.,Katsnelson M.I., Thermodynamics of evolution and the origin of life, Proceedings of the National Academy of Sciences, 2022, 119:e2120042119 [Crossref], [Google Scholar], [Publisher]
[88] RuiqinY.I., FahrenbachA., HongoY., Radiolytically driven chemical evolution, Journal of Geography (Chigaku Zasshi), 2020, 129:837 [Crossref], [Google Scholar], [Publisher]
[89] Rossi C., Madl P., Foletti A.,Mocenni C., Equilibrium and far-from equilibrium states, in: Fels, D., Cifra, M., Scholkmann, F. (Eds). Fields of the cell. Research Signpost., Kerala, 2015 [Crossref], [Google Scholar], [Publisher]