h-index: 7     i10-index: 5

Document Type : Original Research Article

Authors

1 National Centre for Physics, Quaid-i-Azam University Campus, Islamabad, 44000, Pakistan

2 Department of Physics, Hazara University Mansehra, Pakistan

3 Department of Physics, School of Natural Science (SNS), National University of Sciences & Technology (NUST), H-12, Islamabad, Pakistan

4 Department of Physics, University of Engineering and Technology Lahore, Pakistan

5 Department of Physics and Astronomy, University of Nigeria, Nsukka, 410001, Nigeria

Abstract

In this study, a hydrothermal method was used to synthesize Tix MnNiO nanostructures for photovoltaic applications. The synthesized films display a hexagonal phase and are polycrystalline. They exhibit a preferred alignment on the (111), (112), (116), (121), and (200) planes. The angles 2 theta are (26.612, 30.816, 32.154, 33.154, and 37.856) degrees. The structural properties of the material are enhanced by incorporating titanium into the lattice of manganese, nickel oxide. By integrating titanium into the MnNiO lattice, the material's UV absorbance was enhanced. At 310 nm, the noticeable peaks of the materials show a rise in titanium concentration, leading to enhanced absorbance during synthesis. The material absorbance decreases as the wavelength of light in the visible region increases. The indirect bandgap energy of the synthesized Tix MnNiO film decreases with increasing molar concentration, ranging from 2.75 eV to 1.82-1.50 eV.

Keywords

Main Subjects

OPEN ACCESS

©2024 The author(s). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit: http://creativecommons.org/licenses/by/4.0/

PUBLISHER NOTE

Sami Publishing Company remains neutral concerning jurisdictional claims in published maps and institutional affiliations.

CURRENT PUBLISHER

Sami Publishing Company

 

 

[1]          Josephine E. N., Ikponmwosa O. S., Ikhioya I. L., Enhanced physical properties of SnS/SnO semiconductor material, Asian Journal of Nanoscience and Materials, 2023, 3:199 [Crossref], [Google Scholar], [Publisher]
[2]          Ahmad I., Razzaq J., Ammara A., Kaleem F., Qamar M., Impact of Annealing Temperature on Hydrothermally Synthesized Copper Antimony Oxide (Cu2Sb2O) from Amorphous Phase to Monoclinic Structure, Advanced Journal of Chemistry, Section A, 2024, 7:1 [Crossref], [Google Scholar], [Publisher]
[3]          Ikhioya I. L. et al., Impact of precursor temperature on physical properties of molybdenum doped nickel telluride metal chalcogenide material, Asian Journal of Nanoscience and Materials, 2023, 2:156 [Crossref], [Google Scholar]
[4]          Akaltun Y., Çayir T., Fabrication and characterization of NiO thin films prepared by SILAR method, Journal of Alloys and Compounds, 2015, 625:144 [Crossref], [Google Scholar], [Publisher]
[5]          Oliveira M.V.D.F., Delgado O.T., Cedro W.L., Rivera Y.R., Solovieva Y., Sant'anna G.L., Ribeiro A.L.C., Silva A.T.P.D., Moreira E.M.D.S.C., Coelho W.A.A., Rodrigues A.D.Q., Synthesis and characterization of nio for appications in photoelectronics devices, ciência e engenharia de materiais: conceitos, fundamentos e aplicação, 2021, 1:374 [Crossref], [Google Scholar], [Publisher]
[6] Chukwuemeka E. J., Osita N. A., Odira A. O., Uchechukwu U. C., Mimi J. D., Ikhioya I. L., Performance and Stability Evaluation of Low-Cost Inorganic Methyl Ammonium Lead Iodide (CH3NH3PbI3) Perovskite Solar Cells Enhanced with Natural Dyes from Cashew and Mango Leaves, Advanced Journal of Chemistry, Section A, 2024, 7:27 [Crossref], [Google Scholar], [Publisher]
[7]          Shah H., Afzal S., Usman M., Shahzad K., Ikhioya I., Impact of annealing temperature on lanthanum erbium telluride (La0. 1Er0. 2Te0. 2) nanoparticles synthesized via hydrothermal approach, J. Chem. A, 2023, 6:342. [Crossref], [Google Scholar], [Publisher]
[8] Udofia K.I., Ikhioya I.L., Okoli D.N., Ekpunobi A.J., Asian Journal of Nanoscience and Materials, Asian Journal of Nanoscience and Materials, 2023, 2:135 [Crossref], [Google Scholar], [Publisher]
[9]          Udofia K. I., Ikhioya I. L., Okoli D. N., Azubike J., Impact of doping on the physical properties of PbSe chalcogenide material for photovoltaic application, Asian Journal of Nanoscience and Materials, 2023, 2:135 [Crossref], [Google Scholar]
[10]       Sarwar S.G., Ikhioya I.L., Afzal S., Ahmad I., Supercapitance performance evaluation of MXene/Graphene/NiO composite electrode via in situ precipitation technique, Hybrid Advances, 2023, 4:100105 [Crossref], [Google Scholar], [Publisher]
[11]       Samuel S.O., Timothy Z.J., Ojoba C.K., Ikhioya I.L., Temperature's Impact on the Physical Properties of Rare Earth Element Doped SrS for Optoelectronic Use, 2023, 3:147 [Crossref], [Google Scholar], [Publisher]
[12]       Chen G.J., Lin C.M., Shih Y.H., Jian, S.R., The microstructures and characteristics of NiO films: Effects of substrate temperature, Micromachines, 2022, 13:1940 [Crossref], [Google Scholar], [Publisher]
[13]       da Silva A.K., Ricci T.G., de Toffoli A.L., Maciel E.V.S., Nazario C.E.D., Lanças F.M., The role of magnetic nanomaterials in miniaturized sample preparation techniques, In Handbook on Miniaturization in Analytical
Chemistry Elsevier, 2020, 77 [Crossref], [Google Scholar], [Publisher]
[14]       Echresh A., Abbasi M.A., Shoushtari M.Z., Farbod M., Nur O., Willander M., Optimization and characterization of NiO thin film and the influence of thickness on the electrical properties of n-ZnO nanorods/p-NiO heterojunction, Semiconductor Science and Technology, 2014, 29:115009 [Crossref], [Google Scholar], [Publisher]
[15]       Garten L.M., Selvarasu P., Perkins J., Ginley D., Zakutayev A., Phase formation of manganese oxide thin films using pulsed laser deposition, Materials Advances, 2021, 2:303 [Crossref], [Google Scholar], [Publisher]
[16]       Indulal C.R., Biju R., Nand D., Raveendran R., Dielectric and Optical Band Gap Studies of Nanostructured Manganese Nickel Oxide and Cobalt Nickel Oxide, Oriental Journal of Chemistry, 2017, 33:1581 [Crossref], [Google Scholar], [Publisher]
[17]       Jadhav P.R., Shinde V.V., Navathe G.J., Karanjkar M.M., Patil P.S., June. Manganese oxide thin films deposited by SILAR method for supercapacitor application, In AIP Conference Proceedings American Institute of Physics, 2013, 1536:679 [Crossref], [Google Scholar], [Publisher]
[18]       Rajesh K., Pothukanuri N., Dasari S.G., Reddy M.R., Investigations of spray-deposited NiO thin films for ultrasensitive formaldehyde detection, Journal of Alloys and Metallurgical Systems, 2023, 2:100009 [Crossref], [Google Scholar], [Publisher]
[19]       Kumar N., Phani M.K., Chamoli P., Manoj M.K., Sharma A., Ahmed W., Srivastava A.K., Kumar S., Nanomaterials for advanced photovoltaic cells, Emerging nanotechnologies for renewable energy, 2021, 239 [Crossref], [Google Scholar], [Publisher]
[20]       Maaoui B., Aoun Y., Benramache S., Nid A., Far R., Touati A., Synthesis and characterization of physical properties of the NiO thin films by various concentrations, Advances in Materials Science, 2020, 20:79 [Crossref], [Google Scholar], [Publisher]
[21]       Mane V.J., Malavekar D.B., Ubale S.B., Lokhande V.C., Lokhande C.D., Manganese dioxide thin films deposited by chemical bath and successive ionic layer adsorption and reaction deposition methods and their supercapacitive performance, Inorganic Chemistry Communications, 2020, 115:107853 [Crossref], [Google Scholar], [Publisher]
[22]       Napari M., Huq T.N., Hoye R.L., MacManus‐Driscoll J.L., Nickel oxide thin films grown by chemical deposition techniques: Potential and challenges in next‐generation rigid and flexible device applications, InfoMat, 2021, 3: 536 [Crossref], [Google Scholar], [Publisher]
[23]       Poulain R., Lumbeeck G., Hunka J., Proost J., Savolainen H., Idrissi H., Schryvers D., Gauquelin N., Klein A., Electronic and chemical properties of nickel oxide thin films and the intrinsic defects compensation mechanism, ACS Applied Electronic Materials, 2022, 4: 2718 [Crossref], [Google Scholar], [Publisher]
[24]       Ukoba K.O., Eloka-Eboka A.C., Inambao F.L., Review of nanostructured NiO thin film deposition using the spray pyrolysis technique, Renewable and Sustainable Energy Reviews, 2018, 82: 2900 [Crossref], [Google Scholar], [Publisher]
[25]       Xia H., Wan Y., Yan F., Lu L., Manganese oxide thin films prepared by pulsed laser deposition for thin film microbatteries, Materials Chemistry and Physics, 2014, 143: 720 [Crossref], [Google Scholar], [Publisher]
[26]       Yoshio M., Noguchi H., Secondary Batteries-Lithium Rechargeable Systems –
Lithium-Ion | Positive Electrode: Manganese Oxides, Encyclopedia of Electrochemical Power Sources, 2009, 307 [Crossref], [Google Scholar], [Publisher]
[27]       Zahan M., Podder J., Structural, optical and electrical properties of Cu: MnO2 nanostructured thin films for glucose sensitivity measurements, SN Applied Sciences, 2020, 2:1 [Crossref], [Google Scholar], [Publisher]
[28]       Zankowski S.P., Van Hoecke L., Mattelaer F., De Raedt M., Richard O., Detavernier C., Vereecken P.M., Redox layer deposition of thin films of MnO2 on nanostructured substrates from aqueous solutions, Chemistry of Materials, 2019, 31: 4805 [Crossref], [Google Scholar], [Publisher]
[29]       Zhang C., Zhang Y., Nie Z., Wu C., Gao T., Yang N., Yu Y., Cui Y., Gao Y., Liu W., Double Perovskite La2MnNiO6 as a High‐Performance Anode for Lithium‐Ion Batteries, Advanced Science, 2023, 2300506 [Crossref], [Google Scholar], [Publisher]
[30]       Guo W., Yang T., Huang L., Wang S., Li, J., Hydrothermal preparation of MnNiO3/Ni6MnO8 nanospheres on nickel foam as a high stability electrode material for supercapacitor, Journal of Alloys and Compounds, 2022, 924: 166490  [Crossref], [Google Scholar], [Publisher]
[31]       El Baakili S., Semlali A., El Mabrouk K., Bricha M., Synthesis Method Effect on Acellular Bioactivity of Bioglasses: Structural Analysis and Solid-State NMR, Journal of Applied Organometallic Chemistry, 2023, 3:268  [Crossref], [Publisher]
[32]       Ali F. et al., Improved Morphological, Structural, and Optical Features of ErxCuNiO3 {x= 0, 0.5, 0.7, 0.9}, Journal of Applied Organometallic Chemistry, 2023, 3:308 [Crossref], [Google Scholar], [Publisher]