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A B S T R A C T 
 

 Based on the simulation results, steady-state tracking faults are improved. 
Control of indeterminate systems, despite the actuator and sensor bias, has been 
a major challenge. Sensor fault can cause process fault. Among the cases where 
sensor bias is common, air velocity measurements and gyroscope rates can be 
mentioned. Although considerable research efforts have previously focused on 
adapting the fault, the bias correction of the sensor appears to be relatively 
limited. However, the cause of several crashes was the sensor fault, due to radio 
altimeter fault, angle of attack sensor fault, airspeed speed sensor fault. Also, 
finding a way to fix the sensor bias problem is of the utmost importance. The 
direct model reference adaptive control (MRAC) method is used to control 
uncertain systems using controllers that are adapted to achieve a performance 
close to a reference model. However, these controllers maintain system stability 
and provide close tracking of the reference model response. In this study, we 
intend to address the problem of unknown fault bias matching by adjusting the 
direct reference model adaptive control for state-feedback for state-tracking 
(SFST). Also, to obtain an asymptotic stable bias fault estimator, we use the 
Kalman filter to estimate the bias sensor fault. Based on the simulation results, 
steady-state tracking faults are improved. 

  
 

Introduction 

ensor bias matching schemes are 
usually investigated by the SFST-MRAC 
method and the problem of bias 
matching of unknown sensors in 
controlling uncertain systems is 

considered.  

 

 

Such errors may cause serious damage to the 
stability and performance of the closed loop. 
Therefore, the model reference adaptive control 
(MRAC) law is modified to estimate sensor bias 
with gain matching and to form asymptotic 
tracking and signal limiting [1-2].  

Also, the discussion of the adaptive control [3–
8], despite the driving error and sensor error in 
the process, is aimed at the simultaneous 
matching of the sensor and bias sensor errors 
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with the help of MRAC control law. Therefore, 
the MRAC method is proposed, which is a 

promising method for maintaining stability and 
controllability in the event of 

driver error, without the need for error 
detection, identification and reconfiguration. 
Although the results presented are for cases 
with a single reference input, they can be 
extended to systems with multiple stimuli and 
multiple reference inputs. The FTFC scheme is 
proposed which includes both the outer ring 
controller and the inner ring [9-12]. After 
introducing a leader-follower control 
mechanism by integrating a collision avoidance 
mechanism as an outer ring control, designed to 
guarantee the UAV to prevent collisions with 
impediments, an FTC strategy, as a controller of 
the inner ring, is designed to counteract 
stimulus errors as well as to prevent saturation 
of healthy stimuli. Although they are practically 
applicable and especially attractive in terms of 
elegance and simplicity, there are drawbacks to 
the method of avoiding collision. Therefore, the 
research path can be directed towards updating 
the mechanism of avoidance of dealing with 
smart and adaptive capabilities. Bias 
estimations for multi-sensor systems are 
discussed [12–15], which are important in 
some practical areas, such as target tracking, 
integrated navigation, transmission network, 
fault tolerance, and so on. In fact, studies focus 
on the state matching problem for a type of 
dynamic system with multiple asynchronous 
sensors, where observations from different 
sensors are accidentally missing. Here, 
optimum state matching is achieved by using 
the multipurpose system theory and the 
modified Kalman filter. In addition, the problem 
of point-setting tracking is discussed by sensor 
bias and actuator offset [15-18]. For example, 
we consider a process that may be the trigger 
input of an unmodulated offset, while sensor 
measurements may also be corrupted by an 
unmodulated bias, which is probably due to 
incomplete calibration. So the question arises 
whether it is possible to achieve a constant 
zero-state error in the presence of both 
unknown states, stimulus offset and unknown 
sensor bias. In SISO systems, while there are 
both offset and bias sensor offsets, a servo-loop 
architecture with forward and reverse 
controllers cannot be used to track the position 
of the set point. Although the results in these 

papers are limited to SISO transfer functions, 
generalizations about MIMO based on state 
space models are also being investigated. For 
the case of both operator and sensor 
disturbances, both of which are measured, set 
point tracking using feed control is provided. 
MRAC schemes are designed by output 
feedback for output tracking in sensor error 
display [19-22]. And [23-26] have been 
expanded, and in fact the sensor uncertainty 
compensation problem has been addressed for 
the adaptive control of the multi-system 
reference model, two output feedback-based 
MRAC schemes for dynamically recognized 
MIMO systems. Sensor uncertainty as an 
indefinite function is a parameter adjustable 
and a compensator designed to be able to 
adapt. Therefore, for unknown dynamical 
systems, a new feedback control structure is 
created, by matching, so it will be able to detect 
uncertainties in both types of measurements. 
The results of effective offsets, system and 
sensor, of the simulation show that the 
proposed MRAC scheme for unknown dynamic 
systems can significantly improve tracking 
performance despite sensor uncertainty [27]. 

Kalman Filter 

 The Kalman filter is an efficient recursive 
filter that estimates the state variables of a 
dynamic system utilizing a set of indirect and 
distorted noise measurements. The original 
Kalman filter format is based on a white noise 
linear system, which is why it is guaranteed 
only under the assumptions of linearity of the 
system as well as white and system noise 
independent and Kalman filter optimality. 
Therefore, to use the Kalman filter, accurate 
information on the nature of the noise, 
including mean, variance, and standard 
deviation, must be available, which is 
sometimes difficult or impossible. The purpose 
of the Kalman filter is to estimate system state 
variables based on measurements with noise 
and random variables. The Kalman filter is a 
powerful and general tool for combining 
information in uncertain and dynamic 
environments. In most cases, the information 
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 extracted by this filter is very accurate. Before 
dealing with the Kalman filter, processes are 
briefly adressed. 

Testing Performance of the Control Rules 
Provided 

To test the efficiency of the different control 
rules presented in this study, in the presence of 
unknown sensor bias, the following two 
simulations are performed. In each of these 
cases an unknown bias is assumed to occur at t 
= 0. 

Theory 1 (MRAC Feedback Bias Estimation) 

The state variables for the longitudinal 
dynamic model are the four state variables: 
Actual velocity (s/m), angle of attack α 
)Degree(, ground angle θ )Degree  ( and ground 
velocity q )Degree/second). Elevator and 
throttle inlet are the control inputs, denoted by 
𝑢𝑒 (in degrees) and 𝑢𝑡, respectively. Input 𝑢𝑒 
shows the elevator position (in degrees) and 
the input. The 𝑢𝑡 valve shows the coefficient of 
strength by a fixed operating scale, so no unit is 
used for 𝑢𝑡 [1]. The units of measurement of the 
𝛽 components that represent biases are, 
respectively, m/s, degrees, degrees, degrees per 
second. By measuring bias values, the standard 
MRAC control law is implemented, which 
applies, by conventionally or optionally, 𝐾̂1(𝑡) 

and 𝐾̂2(𝑡) at half their actual value. Initializing 
and matching interests are selected on a 
contractual or optional basis. 

(1) 

𝐴 = [

−0.0062 −0.0815 −0.1709 −0.0026
−0.0344 −0.5717 0 1.0050

0 0 0 1.0000
0.0115 −1.0490 0 −0.6803

] 

(2)                               𝐵 = [

0 1.3287
−11.4027 −0.0401

0 0
−44.5192 0.8824

] 

(3)                                           𝑥(𝑡) = [𝑣 α 𝜃 𝑞]𝑇 

(4)                                                     𝑢(𝑡) = [𝑢𝑒 𝑢𝑡]𝑇 

(5)                                                         𝐴𝑚 = 𝐴 +  𝐵𝑘1
𝑇 

(6)                                                                   𝐵𝑚 = 𝐵𝐾2 

  Here K1 is the LQR gain designed for optimal 
closed-loop performance. Interest K2=L2, such 
that Bm=B. In the simulation, K2 is chosen to 
provide the appropriate scale r(t) (reference 
input). The unknown constant bias, in the case 
measurement, is either optionally or optionally 
selected as follows: 

(7)                                           𝛽 = [5 2 −1 10] 

                                                                                                       𝐾̂1(𝑡) = 0.5𝐾1 

                                                                                                       𝐾̂2(𝑡) = 0.5𝐾2 

(8)                                                              Γ1 = 0.005𝐼4 

                                                                   Γ2 = 0.005𝐼2 

Figure (1) and Figure (2) show that by 
examining the simulation results, we reach the 
law of comparative control in Theory 1, the 
stability (limited signal) and the limitation of 
the tracking error (which is zero). It ensures 
that the states are slow, but by comparing xm 
and x̅, we find that our parameters do not 
converge with the main parameters in the 
system. Therefore, the limitation of the closed-
loop signal or the limitation of the tracking 
error cannot be proved. However, in this 
example, the tracking error appears to be close 
to some constant non-zero values. So we need 
to have a correct estimate of β. 
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A. Parameter v  

 
B. Parameter α 

 
C. Parameter ɵ 

 
D. Parameter q   

Figure 1. Show model reference modes (xm) of theory 1 
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A. Parameter comparison v 

 
B. Parameter comparison α 

 
C. Parameter comparison β 

 
D. Parameter Comparison q 
Figure 2. Comparison of the parameter (xm) and )x̅) of Theory 1 
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Theory 2, using asymptotic bias estimator by 
MRAC: In theory 2, asymptotic bias estimator, 
almost all the parameters are fully corrected 
and their values are closely converged to the 
reference model. Therefore, the more accurate 
the β  ̂estimate is, the better x can be measured 
and the closer to x ̅. The figures below show the 
accuracy of the material. Figures (3) and (4) 
show the correctness of the use of the Kalman 
filter to accurately estimate β. In Theory 1, by 
adding the feedback bias estimation based on 
the MRAC control law, the actual velocity 
parameters are v(s/m), angle of attack α 

(degrees), ground angle θ (degrees) and ground 
velocity q (degrees/seconds), to some extent. It 
is modified, but because it is a direct adaptive 
method, the device's parameters do not 
converge with the main parameters in the 
system. In theory 2, Asymptotic Bias Estimator, 
almost all parameters are completely corrected 
and their values are close and convergent to the 
reference model. So, the more accurate the 
estimate (β), the more accurate the (β ̂). As a 
result, the measurable x ̅ will improve and get 
closer to xm. 

 
A. Parameter v 

 
B. Parameter α 

 
C. Parameter θ 

 
D. Parameter q  
Figure 3. Representation of model reference states (xm) of Theory 2 
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A. Parameter comparison v 

 
B. Parameter comparison α 

 
C. Parameter comparison β 

 
D. Parameter Comparison q 
Figure 4. Comparison of the parameters (x̅) and (xm) of theory 2 
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 Conclusion  

This study shows that bias can be estimated 
and used by MRAC to guarantee asymptotic 
state tracking and closed loop stability. For 
accurate estimation of β (bias), we used Kalman 
filter. The purpose of the Kalman filter is to 
estimate system state variables based on 
measurements with noise and random 
variables. Based on the simulation results, 
steady-state tracking errors are improved. In 
fact, the tracking error tends to zero. In Theory 
1, by adding the feedback bias based on the 
MRAC control law, the actual velocity 
parameters are v(m/s), angle of attack α 
(degree), ground angle θ (degree) and ground 
velocity q (degree/second), partly. It is 
modified, but since it is a straightforward 
comparative method, the parameters of the 
device do not converge to the main parameters 
in the system. In Theory 2 (Asymptotic Bias 
Estimator), we obtain an accurate estimate of 
the bias using the Kalman filter, as a result, 
almost all parameters are fully corrected and 
their values are closely converged to the 
reference model. 
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