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A B S T R A C T 
 

Chalcogen bonding, a non-covalent interaction involving chalcogen atoms (e.g., 
sulfur, selenium, and tellurium), plays a crucial role in various chemical and 
biological processes. Understanding and characterizing chalcogen bonding 
interactions are essential for designing novel materials, medications, and 
catalysts. In recent years, machine learning has emerged as a powerful tool for 
studying molecular interactions, including chalcogen bonding. This study 
provides an overview of the application of machine learning in characterizing 
chalcogen bonding. Experimental techniques, such as infrared (IR), nuclear 
magnetic resonance (NMR) spectroscopy, and X-ray crystallography, have been 
used to study chalcogen bonding. However, these methods often suffer from 
inherent experimental challenges. On the other hand, computational approaches, 
including quantum mechanics (QM) and molecular dynamics (MD) simulations, 
offer valuable insights into the electronic structure and energetics of chalcogen 
bonding. Nonetheless, they can be computationally demanding and may not fully 
encompass the diversity of chalcogen bonding interactions. Machine learning, 
with its ability to identify patterns and relationships in vast datasets, presents a 
promising alternative for characterizing chalcogen bonding. The study explains 
how machine learning algorithms, such as supervised and unsupervised learning, 
can be employed to classify and predict chalcogen-bonded complexes using 
neural network potentials to assess the persistence of chalcogen bonds in 
solution and ML models to predict two key solid-state synthesis conditions that 
must be specified for chalcogenide glasses. By integrating experimental data and 
computational results, machine learning models offer a holistic approach to 
understanding chalcogen bonding in various molecular systems. It emphasizes 
the integration of experimental and computational data as a means to maximize 
the accuracy and applicability of machine learning models and envisions a 
promising future for machine learning in characterizing chalcogen bonding 
interactions. 
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 Introduction  

 he structure, stability, and 
functionality of molecules and 
molecular systems are largely shaped 
by non-covalent interactions, a class 

of intermolecular forces. These exchanges take 
place between molecules or different atoms of 
the same molecule without the exchange of 
electrons that covalent bonds do. Instead, they 
are based on less powerful electrostatic forces 
that develop as a result of variations in electron 
distributions within atoms or molecules [1]. 
Because of differences in electron distributions, 
non-covalent interactions are dependent on 
electrostatic forces. A variant of Coulomb's Law 
can be used to explain these interactions, which 
are inherently electrostatic in nature. Positively 
charged organisms and negatively charged 
species interact to produce electrostatic 
interactions. Intermolecular interactions are 
the combination of attracting and repulsive 
forces, just like covalent and ionic bonds. 
Intermolecular contacts are crucial for solids 
and liquids because they have close-packed 
molecules with a high electrostatic interaction 
rate relative to their distance from one another. 
The Van der Waals forces, hydrogen bonds, and 
chalcogen bonds are only a few examples of 
non-covalent interactions. Because transient 
dipoles exist between molecules, Van der Waals 
forces, which are weak attractive forces, are 
generated. Chemistry, biology, materials 
science, and drug design are just a few of the 
scientific disciplines that depend on non-
covalent interactions [1]. The behaviour and 
characteristics of molecules and materials are 
governed by non-covalent interactions, which 
represent a fundamental force. In numerous 
scientific fields, including drug design and 
materials research, understanding and 
describing these interactions is essential. Our 
understanding of non-covalent interactions is 
continually expanding thanks to experimental 
methodologies, computational tools, and 
machine learning strategies, which help us 
create molecular systems and materials that are 
more effective and precise [2]. Several types of 
non-covalent interactions include Van der 
Waals, hydrogen bonding, chalcogen bonding, 
etc. Molecules interact with one another 

through weak attractive interactions called van 
der Waals forces. Temporary dipoles are 
produced as a result of variations in the 
molecules' electron densities, which give birth 
to them. Because of the dipoles that these 
transient dipoles can create in nearby 
molecules, there is an attractive force between 
them. The strength of Van der Waals forces is 
often lower than that of other non-covalent 
interactions like hydrogen and chalcogen 
bonds. Between a hydrogen atom and an 
electronegative atom, such as oxygen, nitrogen, 
or fluorine, hydrogen bonds are a sort of non-
covalent interaction that takes place. Although 
it can weakly link with another electronegative 
atom in a nearby molecule, the hydrogen atom 
is covalently bound to one electronegative atom 
in one molecule. While hydrogen bonding and 
chalcogen bonding are particular forms of 
dipole-dipole interactions, Van der Waals forces 
cover a wider spectrum of non-covalent 
interactions, including dispersion forces, 
dipole-dipole interactions, and dipole-induced 
dipole interactions. In contrast to chalcogen 
bonding, which involves chalcogen atoms (such 
as sulfur, selenium, or tellurium), hydrogen 
bonding is characterized by the presence of 
hydrogen atoms bound to strongly 
electronegative atoms (such as oxygen or 
nitrogen). Chalcogen bonds are stronger than 
ordinary Van der Waals forces, but hydrogen 
bonds are often stronger than chalcogen bonds. 
For example, as it is the case for other non-
covalent interactions, the chalcogen bond 
strength rises with the polarizability of the 
participating atom (thus, as the atomic number 
of an atom of the 16th group increases, the 
strength of the bond rises), the basicity of 
interacting atom and the polarization of LA 
induced by the backbone [3].  

Dipole-dipole interactions between 
electronegative atoms, chalcogen bonding and 
hydrogen bonding are similar, but they differ in 
the particular involved atoms. 

The recognition and understanding of 
chalcogen bonding, a relatively recent addition 
to the family of non-covalent interactions, have 
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 increased dramatically during the past few 
decades. While the exact timeframe is not 
specified, recent research in the area of 
chalcogen bonding has been booming in the last 
10 years [4]. Chalcogen bonding has evolved as 
a distinct and significant non-covalent contact 
with its own special features and uses, in 
contrast to hydrogen bonding, which has been 
extensively investigated and acknowledged for 
its role in molecular recognition and self-
assembly. A Lewis base and a chalcogen atom 
(O, S, Se, or Te) engage electrostatically to form 
a chalcogen bond. An electron-rich species 
called a Lewis base is one that can give up a 
single pair of electrons to create a bond.  
Dependence on the polarizability of the 
chalcogen atom is one of the distinctive features 
of chalcogen bonding. The strength of the 
chalcogen bond typically increases from 
oxygen, which is the least polarizable element, 
to tellurium, which is the most polarizable 
element [5]. This is because higher attractive 
forces are produced as a result of the enhanced 
ability of more polarizable chalcogen atoms to 
react to variations in electron density. 
Chalcogen bonding's geometry can vary and is 
influenced by steric and electrical variables, as 
well as the strength of the bonding. Linear, 
branched, and t-shaped configurations are 
typical geometries [6]. Chalcogen bonding is an 
intermediate force that can have a major impact 
on molecular structures and supramolecular 
assemblies. Its strength is typically smaller than 
Van der Waals contacts but greater than 
covalent bonds. Chalcogen bonding has come 
under the spotlight in the study of biochemistry 
due to its significance in a number of biological 
processes. In the stability of protein structures, 
such as the secondary structural components 
(such as -helices and -sheets), and in ligand-
receptor interactions, for instance, chalcogen 
bonding interactions are essential. Chalcogen 
bonding is also being investigated in medicinal 
chemistry and drug design. Drug compounds' 
binding affinity and selectivity for particular 
protein targets can be improved by including 
chalcogen-bonding interactions. This might 
enhance the medications effectiveness and 
lessen their negative effects. Chalcogen bonding 
has uses in supramolecular chemistry, where it 
is exploited to create self-assembling structures 

and useful substances. Chalcogen bonding has 
been used in supramolecular chemistry to 
design and synthesize new materials. For 
example, a study published in Nature 
Communications developed hybrid chalcogen 
bonds (-STeS- and -SSeS-) bridged HPNAs using 
docetaxel (DTX) as the model drug. The effects 
of hybrid chalcogen bonds on the self-assembly, 
bioactivation, pharmacokinetic behaviour, bio-
distribution, and HPNAs pharmacodynamics 
were investigated in detail. Multiple non-
covalent molecular forces drove self-assembly, 
including π–π stacking among DTX molecules, 
alkyl-alkyl interaction among alkyl part, 
hydrogen bonding among hydroxyl structure, 
and chalcogen bonding among linkers. 
Chalcogen bonding has also been used in drug 
design. A study published in the Journal of the 
American Chemical Society reported that 
chalcogen bonding can be used to assemble 
discrete molecules. The study used chalcogen-
chalcogen bonding catalysis to assemble a 
series of discrete molecules. Another study 
published in PMC reported that chalcogen 
bond-guided conformational isomerization 
enables catalytic dynamic kinetic resolution of 
sulfoxides. Chalcogen bonding has been used in 
materials science to design new materials with 
specific properties. For example, a study 
published in the Journal of the American 
Chemical Society reported that chalcogen 
bonding can be used to activate ethers in 
supramolecular catalysis. The study used dual 
chalcogen bonding activation to catalyze the 
ethers activation. Another study published in 
PMC reported that cooperative chalcogen 
bonding interactions in confined sites activate 
aziridines. Anion recognition has been 
accomplished using chalcogen-based receptors, 
enabling the selective binding [7]. 

Machine learning and chalcogen bonding are 
two fascinating and developing fields of science 
that have received a lot of attention recently. 
The non-covalent interaction known as 
chalcogen bonding, which involves the 
chalcogen elements oxygen, sulfur, selenium, 
and tellurium, has become recognized as a 
separate and significant force in molecular 
contacts that has a significant impact on a 
variety of chemical and biological processes [8]. 
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 Contrarily, machine learning, a branch of 
artificial intelligence, has fundamentally 
changed how scientists across fields of study 
examine complex data, spot patterns, and 
makes predictions. A Lewis base and a 
chalcogen atom interact electrostatically to 
form chalcogen bonds, which are similar to 
hydrogen bonds. The development of drugs, 
supramolecular assemblages, and molecular 
recognition all depend on this particular non-
covalent interaction. Designing innovative 
materials, enhancing drug-target interactions, 
and modifying the characteristics of molecular 
systems all depend on an understanding of and 
characterization of chalcogen bonding 
interactions [9]. Machine learning has shown to 
be an effective method in molecular 
interactions, particularly chalcogen bonding. 
Machine learning techniques can recognize 
patterns, categorize interactions, and forecast 
molecular behaviour using algorithms that 
learn from data. Machine learning has the 
ability to speed up our understanding of this 
non-covalent interaction in the context of 
chalcogen bonding by evaluating massive 
datasets and forecasting the strengths of 
chalcogen bonds [10]. A significant force in 
molecular contacts having several applications 
in chemistry, biology, and materials science is 
chalcogen bonding, a sort of non-covalent 
interaction involving chalcogen atoms (oxygen, 
sulfur, selenium, and tellurium). The 
combination of machine learning and chalcogen 
bonding research in recent years has offered a 
potent and ground-breaking strategy to address 
the complexity of these non-covalent 
interactions [11]. 

A branch of artificial intelligence called 
machine learning focuses on creating 
algorithms that let computers learn from data 
and make predictions or judgments without 
having to be explicitly programmed. It has 
revolutionized with its ability to analyze huge 
and complicated datasets, find patterns, and 
make precise predictions. Machine learning has 
great prospects to improve our comprehension 
of these interactions and assist in the 
development of new materials and medications 
in the context of chalcogen bonding. Chalcogen 
bonding benefits greatly from machine 

learning. Initially, it can help with the 
categorization and prediction of chalcogen 
bonding interactions, allowing for the discovery 
of novel chalcogen-bonded complexes and the 
investigation of bonding patterns in substantial 
datasets. On the basis of known chalcogen 
bonding complexes, machine learning models 
can be trained to identify important 
characteristics that contribute to the potency 
and specificity of chalcogen bonding [12]. 

In addition, machine learning makes it easier 
to combine experimental and computational 
data, giving chalcogen bonding interactions a 
thorough and multidimensional perspective. 
Combining experimental and computational 
data has improved our understanding of 
chalcogen bonding in various ways, including 
understanding the properties of chalcogen-
bonding transporters, the halogen bond, and 
materials discovery. It has also been used to 
generate high-quality datasets for training 
machine learning potentials. To better 
understand the electronic structure, energetics, 
and dynamics of chalcogen bonding, 
researchers can combine information from 
spectroscopic methods, X-ray crystallography, 
computational simulations, and machine 
learning models. Our comprehension of these 
non-covalent interactions can be advanced by 
the combination of machine learning and 
studies on chalcogen bonds. Researchers can 
unravel the complex nature of chalcogen 
bonding by fusing the power of machine 
learning with experimental and computational 
methods. This will enable the development of 
innovative materials, medications, and 
molecular systems with specialized capabilities. 
The topic of chalcogen bonding is poised to be 
opened up in exciting new ways by this 
interdisciplinary approach, opening the door 
for future ground-breaking research [13-15]. 
The aim of the article is to explore the various 
machine learning models in characterizing 
chalcogen bonding. The scope of the article is to 
examine the distinctive properties of chalcogen 
bonding and the significance of this bonding in 
many chemical and biological processes. Along 
with that, we highlight new uses of machine 
learning for describing chalcogen bonding 
interactions. 
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 Overview of Experimental Techniques in 
Characterizing Chalcogen Bonding  

For examining chalcogen bonding interactions, 
spectroscopic methods like infrared (IR), 
nuclear magnetic resonance (NMR), and Raman 
spectroscopy are invaluable resources. These 
techniques offer crucial details regarding the 
structural and dynamic characteristics of solid-
state and solution-based chalcogen-bonded 
complexes [16]. Here is a thorough explanation 
of each spectroscopy method and how it relates 
to understanding chalcogen bonding: 

i. IR spectroscopy:Because it is sensitive 
to the vibrational modes of molecular 
bonds, IR spectroscopy is frequently 
employed to study chalcogen bonding. 
Stretching vibrations of the bonds 
between chalcogen atoms and Lewis 
base acceptors frequently occur in 

chalcogen bonds. In contrast to free 
chalcogen-containing molecules, the 
creation of chalcogen bonds can cause 
distinctive shifts in the IR spectra. 
Specific IR bands' redshifts or blueshifts 
in wavenumbers reveal important 
details regarding the character and 
intensity of the chalcogen bond. For 
example, IR spectroscopy was utilized 
to examine the shifts in the stretching 
vibrations of the chalcogen-oxygen or 
chalcogen-nitrogen bonds in a study of 
chalcogen-bonded complexes between a 
ligand containing chalcogen and a Lewis 
base [17]. The establishment of 
chalcogen bonding connections was 
revealed by the redshifts seen in the IR 
spectra in Figure 1, supporting the 
stabilizing effects of these interactions 
in the complexes. 

 

Figure 1 Chalcogen bonding in Infrared spectroscopy [17] 

IR spectra can be simplified by working at 
very low temperature in liquid krypton (120 K) 
and with a rigid ChB donor such as 2,2,4,4-
tetrafluoro-1,3-dithiethane. Under these 
conditions, simplified spectra could be obtained 

in the presence of 1,2-dimethoxyethane (DME), 
with appearance of several new bands 
associated with the Ch-bonded DME 1,1 dimer, 
as confirmed by theoretical calculations, as 
depicted in Figure 2 [18]. 
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Figure 2 IR spectra of selected spectral regions for the mixtures of chalcogen with DME [18] 

ii. NMR Spectroscopy:NMR spectroscopy 
is another effective method for 
examining chalcogen bonding 
interactions. In particular, in chalcogen-
bonded complexes, the nuclei of 
chalcogen atoms like 17O, 33S, 77Se, 
and 125Te can show chemical shifts and 
spin-spin coupling patterns that are 
responsive to their local surroundings. 
The strength and geometry can be used 
to correlate changes in coupling 
constants and chemical shifts [20]. NMR 
spectroscopy was used to examine the 
chemical shifts of the chalcogen nuclei 

in a study of chalcogen-bonded 
complexes between a Lewis base and a 
ligand that contains chalcogen. The 
chalcogen atoms in the complexes' 
electronic surroundings were revealed 
by the observed chemical changes, 
which also revealed the existence and 
potency of chalcogen bonding 
interactions. For instance, consider a 
chalcogen-bonded complex between a 
tellurium atom and an aluminium, 
nitrogen and carbon atom, as 
demonstrated in Figure 3 [21]. 

 

Figure 3 Chalcogen bond between tellurium and aluminium, nitrogen and carbon atom [21] 

iii. Raman Spectroscopy:By examining the 
light scattering brought on by molecular 
vibrations, Raman spectroscopy is 
utilized to examine chalcogen bonds. 
Raman spectroscopy may identify 

vibrational modes linked to chalcogen 
bonding interactions, just like IR 
spectroscopy [22]. To supplement the 
information acquired from other 
spectroscopic methods, the shifts in 
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 Raman bands reveal details about the 
geometry and strength of the chalcogen 
bond. Raman spectroscopy was used to 
examine the changes in vibrational 
modes linked to the chalcogen-oxygen 
or chalcogen-nitrogen bonds in a study 
of chalcogen-bonded complexes 
between a chalcogen-containing ligand 
and a Lewis base. The presence of 
chalcogen bonding contacts was 
indicated by shifts in Raman bands, 
further supporting the complexes' 
stability [22]. 

iv. X-ray Crystallography for Chalcogen-
Bonded Complexes:A potent method for 
figuring out the three-dimensional 
structures of chalcogen-bonded 
complexes in solids is X-ray 
crystallography [23]. In this method, 
single crystals of chalcogen-bonded 

complexes' X-ray diffraction patterns 
are analyzed. Researchers may calculate 
the bond lengths, bond angles, and 
intermolecular distances in chalcogen-
bonded complexes using the diffraction 
patterns because they reveal data about 
the arrangement of atoms within the 
crystal lattice. For example, the 
presence of chalcogen bonding between 
a selenium atom and a nitrogen atom in 
a molecule was discovered by an 
investigation of the crystal structure. It 
was found that the selenium atom's 
distance from the nitrogen atom was 
2.8, pointing to a robust chalcogen 
connection. It was discovered that the 
angle created by the selenium-nitrogen 
interaction was around 160 degrees, 
illuminating the bent geometry present 
in chalcogen bonding, as illustrated in 
Figure 4 [24]. 

 

Figure 4 Chalcogen bonding in selenium [24] 

Overview of Computational Approaches for 
Chalcogen Bond Analysis 

The study of chalcogen bonding interactions 
has become impossible without the use of 
computational approaches. In addition to the 
experimental methods, these methods offer 
comprehensive insights into the electronic 
structure, energetics, and dynamics of 
chalcogen-bonded complexes [25]. The four 
main computational methods for chalcogen 
bond analysis are discussed in this section as 
follow:quantum mechanics (QM), molecular 
mechanics (MM), and molecular dynamics 
simulations (MD). An overview of the 
approaches was done based on quantum 
mechanics (QM), density functional theory 

(DFT), molecular dynamics, and molecular 
mechanics (MM). 

i. Quantum mechanics (QM):At the quantum 
level, quantum mechanics is a fundamental 
theory that explains how atoms and 
molecules behave. In chalcogen bond 
analysis, the electronic structure and 
energetics of chalcogen-bonded complexes 
are ascertained by solving the Schrödinger 
equation using QM calculations. Although 
QM approaches produce reliable findings, 
because to their high computing cost, they 
can be computationally taxing for big 
systems [26]. 

ii. Molecular mechanics (MM):Molecular 
mechanics is a condensed method for 
modelling the potential energy surface of 
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 molecules and molecular compounds. Atoms 
are modelled as spheres with partial charges 
in MM computations, and force fields are 
used to characterize interatomic interactions 
[27]. Even while MM is computationally 
effective, it ignores electronic effects and 
quantum interactions, which makes it less 
effective for researching chalcogen bonding. 

iii. Density Functional Theory (DFT):One of 
the most popular quantum mechanical 
techniques for examining chalcogen bonding 
interactions is density functional theory 
(DFT). DFT works effectively for big systems 
for chalcogen bond analysis because it 
strikes a fair balance between accuracy and 
computational expense. By resolving the 
Kohn-Sham equations in DFT, where the 
total energy is given as a function of the 
electron density, it is possible to ascertain 
the electronic structure of chalcogen-bonded 
complexes [28].  

Characteristics of DFT in Chalcogen Bond 
Analysis 

1. Bond Lengths and Angles:DFT simulations 
reliably predict bond lengths and angles in 
chalcogen-bonded complexes, offering 
important insights into the spatial 
organization of chalcogen bonding 
interactions. DFT enables energy 
decomposition analysis, which divides the 
interaction energy of chalcogen bonding into 
many contributions, including electrostatic, 
dispersion, and orbital interactions. 
Understanding the nature and power of 
chalcogen bonding is made easier by this 
analysis [29]. 

2. NBO Analysis:The characterization of 
chalcogen bond polarity is aided by Natural 
Bond Orbital (NBO) analysis in DFT, which 
offers insights into the charge transfer and 
electron density redistribution in chalcogen-
bonded complexes. DFT calculations were 
utilized to ascertain the complex's electronic 
structure and energetics in a study of a 
chalcogen-bonded complex between a Lewis 
base and a ligand that contains a chalcogen 
[30]. By calculating the bond lengths, angles, 
and interaction energies, it was possible to 
both validate the existence of chalcogen 
bonding and learn more specifics about the 
type of interaction that was taking place 
[31]. 

iv. Molecular Dynamics (MD) 
Simulations:Computing techniques called 
molecular dynamics (MD) simulations are 
used to track the dynamic behaviour of 
chalcogen-bonded complexes throughout 
time. Using force fields obtained from actual 
data or quantum mechanical computations, 
MD simulations simulate the motion of 
atoms based on classical mechanics [32]. 
The stability and adaptability of chalcogen-
bonded complexes can be better understood 
by using MD simulations to gain knowledge 
about the lifetimes, fluctuations, and 
cooperativity of chalcogen bonds.  

An example on tellurium and nitrogen 
chalcogen-bonded complexes, as illustrated 
in Figure 5, MD simulations revealed several 
conformations and the dynamics of the 
chalcogen bond, revealing information on 
the bond's preferred orientations and 
flexibility [33]. 

 

Figure 5 Tellurium and nitrogen complex [33] 
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 Key Features of Chalcogen Bond Analysis MD 
Simulations'  

i. Lifetimes of Chalcogen Bonds:By 
monitoring the formation and 
dissociation of these interactions over 
time, MD simulations can calculate the 
lifetimes of chalcogen bonds. 
Understanding the stability of 
chalcogen-bonded complexes requires 
this knowledge [34]. 

ii. Fluctuations and Dynamics:The dynamic 
behaviour of chalcogen bonds is 
revealed by MD simulations, 
demonstrating how they fluctuate and 
adjust to changes in the molecular 
environment. Understanding the 
adaptability and flexibility of chalcogen 
bonding interactions depends on this 
dynamic information [35]. 

iii. Cooperativity and Solvent Effects:In 
complex systems, MD simulations can 
be used to examine how solvent 
molecules affect chalcogen bonding and 
how cooperatively different chalcogen 
bonds interact. For example, MD 
simulations were used to examine the 
dynamics and variations of the 
chalcogen bond over a time scale of 
nanoseconds in a study of a chalcogen-
bonded complex in a solvent 
environment [36]. The simulations 
demonstrated the collaborative impacts 
of numerous chalcogen bonds inside the 
complex and shed light on the stability 
of the chalcogen bond under various 
solvent conditions.  

In the study of chalcogen bonding interactions, 
computational techniques like density 
functional theory (DFT) and molecular 
dynamics (MD) simulations have become 
essential tools. DFT provides accurate 
knowledge of the electronic structure and 
energy decomposition analyses, whereas MD 
simulations offer dynamic insights into the 
lifetimes and variations of chalcogen bonds. Our 
knowledge of chalcogen bonding and its 
significance in diverse chemical and biological 

systems is further improved by the 
combination of experimental data with 
computer models [37-39]. 

Machine Learning in Chalcogen Bonding 
Analysis algorithm 

Artificial intelligence's specialty of machine 
learning, which can analyze complex data, find 
patterns, and anticipate outcomes without 
explicit programming, has become extremely 
popular in recent years [40]. Machine learning 
offers a potent and cutting-edge method for 
comprehending and forecasting the 
interactions between chalcogen atoms and 
Lewis base acceptors in the context of 
chalcogen bonding studies. Researchers can 
learn more about the nature and properties of 
chalcogen bonding by combining machine 
learning algorithms with experimental and 
computational data, advancing disciplines like 
chemistry, materials science, and drug 
discovery [41]. Algorithms for machine learning 
allow computers and other devices to learn 
from data and make predictions or judgments 
without the need for explicit programming. 
These algorithms, which are a core component 
of the broader subject of artificial intelligence 
(AI), are made to find patterns, connections, 
and trends in data so that systems can become 
more effective over time [42]. The three 
primary categories of machine learning 
algorithms are supervised learning, 
unsupervised learning, and semi-supervised 
learning. In chalcogen bonding analysis, each 
kind of algorithm has a particular function that 
is detailed as follow: 

i. Supervised Learning:On labelled 
datasets, where the input data 
(features) and the associated output 
(labels) are known, supervised learning 
algorithms are trained. In order to 
generate predictions on fresh, 
unforeseen data, the algorithm learns to 
translate the input data to the 
appropriate output [43]. Using 
supervised learning, it is possible to 
categorize chalcogen-bonded 
compounds, forecast the strength of 
chalcogen bonding, or pinpoint 
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 important characteristics that influence 
chalcogen bond formation in the context 
of chalcogen bonding studies. In a 
supervised learning technique, for 
instance, the algorithm is trained using 
a dataset of labelled chalcogen-bonded 
complexes and non-chalcogen-bonded 
complexes. The labels indicate if the 
complex displays chalcogen bonding, 
whereas the properties could include 
bond lengths, angles, and charge 
distributions. The algorithm can 
forecast complexes once it has been 
trained [44]. 

ii. Unsupervised Learning:When a dataset 
lacks labels and the output labels are 
unknown, unsupervised learning 
algorithms are utilized. Finding patterns 
and structure in the data without the 
use of predetermined categories is the 
aim of unsupervised learning. 
Unsupervised learning can be used in 
chalcogen bonding analysis to cluster 
related chalcogen-bonded compounds 
or find hidden trends in huge datasets 
[45]. A dataset of chalcogen-bonded 
complexes is employed in an 
unsupervised learning method without 
any labels. The program evaluates the 
complexes' characteristics and clusters 
them according to their similarity. This 
grouping of chalcogen-bonded 
compounds might show shared 
structural traits or patterns [46]. 

iii. Semi-Supervised Learning:Algorithms 
for semi-supervised learning combine 
aspects of supervised and unsupervised 
learning. To identify trends and 
generate predictions, they combine a 
smaller labelled dataset with a larger 
unlabelled dataset. When it is difficult 
or expensive to collect a fully labelled 
dataset, semi-supervised learning is 
helpful [47]. A limited fraction of 
chalcogen-bonded complexes are 
labelled in a semi-supervised learning 
strategy for chalcogen bonding analysis, 
whereas a much larger set of unlabelled 
complexes is utilised. The program first 

learns to recognize patterns in the 
labelled complexes before generalizing 
its understanding to forecast chalcogen 
bonding in the unlabelled complexes 
[48]. 

Utilizing Machine Learning to Classify and 
Prediction of Chalcogen-Bonded Interactions 

A potential strategy in chalcogen bonding 
research is the use of machine learning to 
categorize and forecast chalcogen-bonded 
interactions. Traditional computational 
methods have a difficult time analyzing 
complex datasets, extracting pertinent features, 
and identifying trends [49]. The following are 
some essential components of the application of 
machine learning to categorize and forecast 
chalcogen-bonded interactions: 

1. Data Preparation:A dataset of 
chalcogen-bonded compounds with 
their accompanying attributes is 
necessary to train a machine learning 
model. Bond lengths, angles, charge 
distributions, and other pertinent 
structural descriptors are examples of 
these characteristics. The dataset may 
additionally include details about the 
nature or strength of the chalcogen 
bond, as determined by experimental 
analysis or computations based on 
quantum mechanics [50]. 

2. Engineering Relevant Features:To 
improve the performance of the 
machine learning model, engineering 
relevant features entails choosing or 
modifying the characteristics. In order 
to decide which features are most 
relevant for the classification or 
prediction task, domain experience in 
chalcogen bonding is crucial [51]. 

3. Supervised Learning for Chalcogen Bond 
Classification:In this context, the dataset 
is labelled with data about whether 
each complex exhibits chalcogen 
bonding or not, and the algorithm 
learns to distinguish between 
chalcogen-bonded and non-chalcogen-
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 bonded complexes based on the input 
features. Examples of supervised 
learning algorithms for chalcogen bond 
classification include Support Vector 
Machines (SVM), Decision Trees, and 
Neural Networks [52]. 

4. Semi-Supervised Learning for Better 
Predictions:Obtaining a properly 
labelled dataset can frequently be 
difficult or expensive. Prediction 
accuracy can be increased by using a 
combination of labelled and unlabelled 
data using semi-supervised learning 
methods [53]. This method is especially 
helpful in chalcogen bonding studies, 
where there may not be enough 
experimental data for labelling. 

5. Chalcogen Bond Strength and Type 
Prediction:Based on input features, 
machine learning models can also be 
trained to predict the strength or type 
of chalcogen bonds. Understanding the 
stability and specificity of chalcogen 
bonding interactions can be greatly 
aided by this information [53]. For 
example, in a regression task, the model 
is trained using a dataset of labelled 
chalcogen-bonded complexes with 
known bond strengths. By predicting 
the bond strength of chalcogen bonds in 
new complexes based on their 
characteristics, the model gains 
knowledge about the energetics of 
chalcogen bonding. 

6. Chalcogen-Bonded Complexes Can Be 
Clustered Using Unsupervised 
Learning:Chalcogen-bonded complexes 
can be grouped together according to 
comparable properties using 
unsupervised learning methods. The 
identification of new chalcogen-bonded 
systems is aided by this technique, 
which can identify common structural 
motifs or features among chalcogen-
bonded complexes. In addition to the 
experimental methods and quantum 
mechanical computations, machine 
learning in chalcogen bonding research 

offers a quicker and more effective 
means to pore over a huge chemical 
space. For gaining fresh understanding 
of chalcogen bonding interactions and 
expediting the creation of novel 
materials, drugs, and molecular 
systems, the combination of machine 
learning with chalcogen bonding 
research has enormous promise [54-
57]. 

Datasets and Features for Machine Learning in 
Chalcogen Bonding 

Selection and Preparation of Datasets Containing 
Chalcogen-bonded Complexes 

When using machine learning for chalcogen 
bonding analysis, the selection and preparation 
of datasets are essential processes. To develop 
precise and trustworthy machine learning 
models, a well-curated and representative 
dataset is necessary [58]. The important factors 
to take into account while choosing and setting 
up datasets that contain chalcogen-bonded 
complexes: 

i. Data sources:A number of sources, 
including experimental research, 
quantum mechanical simulations, and 
crystallographic databases, provide 
datasets with chalcogen-bonded 
complexes. Theoretical data can be 
produced from calculations using 
density functional theory (DFT) or other 
computational techniques, whereas 
experimental data may come from 
spectroscopic methods like infrared 
(IR) and nuclear magnetic resonance 
(NMR) spectroscopy [58]. 

ii. Data Correctness and Consistency:The 
data correctness and consistency 
acquired from various sources may 
vary. To prevent biases and artifacts in 
the dataset, it is essential to guarantee 
data quality and consistency [59]. 
Datasets need to be extensively vetted 
and cross-referenced against databases 
and existing literature. 
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 iii. Labelling:To distinguish between 
chalcogen-bonded and non-chalcogen 
bonded complexes for supervised 
learning tasks, chalcogen-bonded 
complexes should be labelled. 
Depending on the specific study issue, 
labels may be categorical (e.g., mild, 
moderate, or strong chalcogen bonding) 
or binary (1 for chalcogen bonding, 0 
for non-chalcogen bonding) [60]. 

iv. Dataset Balancing:Unbalanced datasets, 
when one class (for example, chalcogen-
bonded) is significantly larger than the 
other (for example, non-chalcogen 
bonded), can result in inaccurate model 
predictions. To balance the dataset, 
strategies like over- or under-sampling 
the minority class or using artificial data 
generating techniques (like SMOTE, or 
Synthetic Minority Over-sampling 
Technique) might be used [61]. 

v. Representative Sampling:The dataset 
ought to reflect the variety of chalcogen-
bonded complexes that are observed in 
real-world situations. To guarantee that 
the machine learning model generalizes 
well to fresh, unexplored data, it should 
cover a wide variety of chalcogen-bond 
strengths, geometries, and chemical 
conditions. 

vi. Data Pre-Processing:A dataset may need 
to be pre-processed before being fed 
into a machine learning model. This 
involves dealing with missing data, 
eliminating duplicates, and formatting 
the data for analysis [62]. 

vii. Data Privacy and Ethics:Data privacy 
and intellectual property issues should 
be taken into account when employing 
experimental data collected from 
research subjects or exclusive 
databases. To use such data, the 
appropriate permits and agreements 
must be in place [63]. 

viii. Open Access Databases:Researchers can 
access databases that are freely 

accessible and that contain curated 
information on chalcogen-bonded 
complexes. Examples include the 
Protein Data Bank (PDB), the 
Cambridge Structural Database (CSD), 
and other repositories of 
crystallographic structures and 
computational results [64]. 

ix. Data Size:In machine learning, the 
dataset's size is significant. Larger 
datasets allow for improved 
generalization of the model while 
smaller datasets may lead to overfitting. 
However, in some circumstances, the 
availability of chalcogen-bonded 
compounds may restrict the dataset's 
size. 

Fundamental steps in utilizing machine 
learning for chalcogen bonding studies include 
the selection and development of datasets 
containing chalcogen-bonded compounds. 
Researchers can create precise and dependable 
machine learning models that offer important 
insights into the nature and properties of 
chalcogen bonding interactions by selecting 
high-quality datasets that are diverse, balanced, 
and reflective of real-world situations [65-67]. 

Extraction of Relevant Molecular Features for 
Machine Learning Models 

A critical step in utilizing machine learning 
models to examine chalcogen bonding 
interactions is the extraction of pertinent 
molecular characteristics. The crucial details 
regarding the chalcogen-bonded complexes are 
captured by these characteristics, which act as 
input variables for the model [68]. The model's 
effectiveness and its capacity to deduce 
meaningful patterns from the data depend 
greatly on the features' selection and 
representation. As examples of pertinent 
chemical features for machine learning in 
chalcogen bonding analysis, the following 
points should be kept in mind: 

i. Geometric Features:In chalcogen-
bonded complexes, the spatial 
arrangement of the atoms determines 
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 the geometric features. Between 
chalcogen atoms and Lewis base 
acceptors, they reveal details regarding 
bond lengths, bond angles, and 
distances. These qualities are crucial for 
describing the structural traits of 
chalcogen bonding interactions. A 
typical geometric aspect in chalcogen 
bonding analysis is the length of the 
bond between the chalcogen atom (for 
instance, oxygen or sulfur) and the 
Lewis base acceptor (for instance, 
nitrogen or oxygen) [69]. 

ii. Charge Distributions:Chalcogen bonding 
is strongly influenced by electrostatic 
interactions. For capturing the electrical 
components of chalcogen bonding, 
characteristics relating to charge 
distributions surrounding chalcogen 
atoms and Lewis base acceptors are 
crucial. For instance, the partial charges 
on the chalcogen atom and the Lewis 
base acceptor that were discovered 
using charge distribution analysis or 
quantum mechanical calculations can be 
useful properties [70]. 

iii. Orbital Features:The electrical structure 
of chalcogen-bonded complexes is 
connected to orbital features. As they 
relate to the electron density and charge 
transfer in chalcogen bonding, they can 
shed light on the highest occupied 
molecular orbital (HOMO) and lowest 
unoccupied molecular orbital (LUMO) 
energies [71]. As an illustration, the 
energy levels of the chalcogen atom's 
HOMO and LUMO orbitals as well as the 
Lewis base acceptor can be employed as 
orbital characteristics. 

iv. Interaction Energies:Chalcogen bonding 
analysis requires precise measurement 
of the interaction energies that 
characterize chalcogen bonding 
interactions. The stability and power of 
chalcogen bonds can therefore be 
represented by characteristics relating 
to interaction energies. The strength of 
the chalcogen bonding in the complexes 

can be measured using features derived 
from interaction energies computed 
using quantum mechanical techniques, 
such as density functional theory (DFT). 

v. Hybrid Features:To capture thorough 
representations of chalcogen bonding 
interactions, hybrid features 
incorporate many forms of information, 
such as geometric and electrical 
features. An instance of a hybrid feature 
would be the sum of the absolute value 
of the partial charge on the chalcogen 
atom and the bond length between the 
chalcogen atom and the Lewis base 
acceptor. This characteristic captures 
the electrostatic and geometric 
properties of chalcogen bonding [72-
73]. 

vi. Physical Characteristics:Physical 
Characteristics can also be important 
elements in chalcogen bonding analysis. 
Examples include molecular weight, Van 
der Waals volume, and polarizability. 
For instance, information on steric 
interactions in the chalcogen-bonded 
complex can be obtained from the Van 
der Waals volume of the chalcogen atom 
or the Lewis base acceptor [74]. 

vii. Derived Characteristics from Machine 
Learning:Using machine learning 
models, one can create fresh 
characteristics that are tailored for 
chalcogen bonding investigation. As an 
illustration, Principal Component 
Analysis (PCA) can be used to decrease 
the dimension of the feature space 
while keeping significant data 
fluctuations, resulting in more effective 
feature representation [75]. 

viii. One-Hot Encoding:One-hot encoding can 
be used to transform categorical 
characteristics into numerical 
representations appropriate for 
machine learning models, such as the 
type of chalcogen-bonded interactions 
(for example, hydrogen bonding, 
halogen bonding). Examples include 
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 oxygen-hydrogen and sulfur-oxygen 
chalcogen bonds, as demonstrated in 

Figure 6. These features can be one-hot 
encoded into binary vectors [76]. 

 

Figure 6 Sulphur and oxygen chalcogen bond [76] 

 

One of the most important steps in applying 
machine learning to chalcogen bonding studies 
is the extraction of pertinent chemical 
characteristics. Researchers can create robust 
and understandable machine learning models 
that offer useful insights into the nature and 
characteristics of chalcogen bonding 
interactions by carefully choosing and 
modelling these features. To ensure that the 
machine learning model captures the most 
crucial characteristics of chalcogen bonding in 
the dataset, the choice of features should be 
guided by domain expertise and the specific 
study objectives [76]. 

Machine Learning Models for Chalcogen 
Bond Characterization 

Supervised Learning Models for Classification 
and Regression Tasks 

For both classification and regression 
problems, supervised learning models are 
frequently employed in the characterisation of 
chalcogen bonds. These models are trained on 
labelled datasets, where the input features 
represent chalcogen-bonded complexes and the 
corresponding output labels or goal values 
denote the existence, strength, or kind of 
chalcogen bonding [77]. In this article, we go 
over a few popular supervised learning models 
for characterizing chalcogen bonds and provide 
pertinent examples. 

i. Support Vector Machines (SVM):SVM is a 
potent classifier that divides data into 
various groups based on hyperplanes. 

When the data cannot be separated 
linearly, it effectively transforms the 
features into a higher-dimensional 
space. Based on their geometrical and 
electrical characteristics, SVM has been 
used to categorize complexes that are 
chalcogen-bonded and those that are 
not. For instance, SVM was trained on a 
dataset of labelled complexes with 
geometric (e.g., bond lengths and 
angles) and electronic (e.g., partial 
charges) properties in a study of 
chalcogen bonding interactions. Based 
on their characteristics, the SVM model 
correctly identified novel compounds as 
chalcogen-bonded or non-chalcogen-
bonded [78]. 

ii. Decision Trees:Based on the values of 
the features, decision trees are 
straightforward but efficient 
classification models that build a tree-
like structure. They can identify non-
linear relationships in the data and are 
simple to comprehend. Chalcogen 
bonding interactions have been 
categorized using decision trees based 
on geometric and physicochemical 
parameters [79]. An example is a 
dataset containing chalcogen-bonded 
compounds and the accompanying 
physicochemical descriptors (such as 
Van der Waals volume and 
polarizability), were employed in a 
decision tree-based technique. The 
chalcogen bonding-indicating 
combinations of descriptors were found 
by the decision tree model [80]. 
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 iii. Random Forests:An ensemble learning 
technique known as Random Forests 
mixes several decision trees to increase 
predicted accuracy and decrease 
overfitting. They are frequently 
employed in chalcogen bond 
characterisation for classification jobs 
because of their dependability and 
capacity for handling large amounts of 
data. Using variables from molecular 

dynamics simulations, such as bond 
fluctuations and hydrogen bonding 
patterns, a random forest model was 
trained on a dataset of chalcogen-
bonded complexes. Based on these 
dynamic properties, the random forest 
model successfully predicted the 
intensity of chalcogen bonding in novel 
complexes, as shown in Figure 7. 

 

Figure 7 Diagram showing random forest [80] 

iv. Neural Networks:Deep learning 
architectures such as Convolutional 
Neural Networks (CNNs) and Multi-
Layer Perceptrons (MLPs) have 
demonstrated excellent performance in 
chalcogen bond characterisation tasks. 
They are appropriate for high-
dimensional feature spaces because 
they automatically learn complicated 
representations from unstructured 
input. An example is using a deep 
learning approach; a CNN was trained 
on a collection of volumetric data 
representing the 3D molecular 
structures of chalcogen-bonded 
complexes [81]. Intricate patterns in the 
electron density distribution were 
recognized by the CNN, which also 
developed the ability to precisely 
foresee the existence and strength of 
chalcogen bonding.  

v. Regression Models:Regression models 
are used to characterize chalcogen 
bonds when the target variable is a 
continuous variable, such as when 

estimating the interaction energy or 
bond strength of chalcogen-bonded 
complexes. Commonly used regression 
methods include linear regression, ridge 
regression, and support vector 
regression (SVR) [82]. An example is a 
dataset with labelled chalcogen-bonded 
complexes and the computed 
interaction energy of those complexes 
from quantum mechanical 
computations was used in a regression 
exercise. To forecast the interaction 
energies of fresh chalcogen-bonded 
complexes based on their 
characteristics, a Support Vector 
Regression model was trained [83-85]. 

vi. Gradient Boosting Models:Gradient 
Boosting models, including XGBoost and 
LightGBM, are well-liked ensemble 
techniques that pool the predictions of 
several weak learners to produce a 
potent model. They are strong and 
frequently perform better in challenging 
classification and regression tasks than 
other models. A Gradient Boosting 
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 model was used, for instance, to 
categorize chalcogen-bonded complexes 
according to their geometrical and 
electrical characteristics. Chalcogen 
bond classification accuracy was 

enhanced by the model's capacity to 
handle non-linear correlations and 
interactions between features (Figure 
8) [86].  

 

Figure 8 Graphical representation of GBM algorithm [86] 

Chalcogen bond characterisation relies heavily 
on supervised learning models, including SVM, 
decision trees, random forests, neural 
networks, regression models, and gradient 
boosting models. These models use labelled 
datasets to categorize complexes, forecast the 
strength of chalcogen bonds, or pinpoint 
particular chalcogen bonding patterns. The 
precise research question and the type of data 
that are available will determine the best model 
to use in disciplines like materials science, drug 
design, and catalysis by applying supervised 
learning in chalcogen bond characterization to 
acquire important insights into the behaviour 
and properties of chalcogen-bonded complexes 
[87]. 

Unsupervised Learning Methods for Clustering 
and Pattern Recognition 

Chalcogen bond characterization relies heavily 
on unsupervised learning techniques, 
particularly when grouping chalcogen-bonded 
compounds based on similarities and spotting 

patterns in the data. Unsupervised learning 
algorithms, in contrast to supervised learning, 
do not rely on labelled data or need explicit 
target labels. Instead, they seek to identify 
hidden patterns and connections in the data 
that will shed light on the variety and 
complexity of chalcogen bonding interactions 
[88]. The following list includes some popular 
unsupervised learning techniques for chalcogen 
bond characterization: 

i. K-Means Clustering:One of the most 
widely used clustering methods in 
unsupervised learning is K-Means. The 
data will be divided into K clusters, and 
each data point will be assigned to the 
cluster with the closest mean. 
Chalcogen bonding has been classified 
into several classes or types using K-
Means clustering to group complexes 
with comparable structural and 
electrical characteristics [89-90]. A 
dataset of chalcogen-bonded complexes 
is clustered using K-Means based on 
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 their geometrical and electrostatic 
characteristics in a chalcogen bond 
study in Figure 9. The technique reveals 
various chalcogen bonding interactions 

by locating separate clusters 
corresponding to different chalcogen 
bond strengths or bond kinds. 

 

Figure 9 Graphical representation of K-mean clustering [90] 

 

ii. Hierarchical Clustering:Another popular 
technique for unsupervised learning in 
chalcogen bond characterisation is 
hierarchical clustering. By repeatedly 
combining data points or clusters based 
on their similarity, it produces a 
structure resembling a tree 
(dendrogram) [91]. The hierarchical 
linkages and groupings of Chalcogen-
bonded complexes have been 
investigated using hierarchical 
clustering. As an illustration, a 
dendrogram based on the pairwise 
distances of chalcogen-bonded 
complexes in terms of their structural 
and physicochemical characteristics is 
created using hierarchical clustering. 
The dendrogram provides a hierarchical 
picture of the chalcogen bonding 
patterns by exposing clusters at various 
levels of similarity [92]. 

iii. Density-Based Spatial Clustering of 
Applications with Noise 
(DBSCAN):DBSCAN is a density-based 
clustering technique that arranges data 
points according to their density. It can 
successfully deal with noise and outliers 
and recognizes dense areas as clusters 
[93]. DBSCAN has been used in 
chalcogen bond analysis to locate tightly 
packed chalcogen-bonded complexes 
and find outliers or non-chalcogen-
bonded complexes. An example is using 
DBSCAN on a dataset of chalcogen-
bonded complexes; the algorithm 
recognizes densely packed areas that 
correspond to complexes with potent 
chalcogen bonds. Noise is defined as 
outliers or complexes with little to no 
chalcogen bonding interactions (Figure 
10) [94]. 

 

Figure 10 Graphical representation of DBSCAN [94] 
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 iv. Self-Organizing Maps (SOM):SOM is a 
kind of unsupervised learning technique 
based on neural networks that reduces 
the dimension of high-dimensional data 
to a low-dimensional representation, 
which is commonly represented as a 
grid. Chalcogen bond characterisation 
has used SOMs to map complex datasets 
and find groups of related chalcogen-
bonded compounds. A two-dimensional 
grid with comparable complexes 
mapped to nearby places is produced by 
training a SOM on a dataset of 
chalcogen-bonded complexes utilizing 
their geometric and electrical 
properties is an example of SOM. 
Finding patterns and areas of interest in 
the data is made easier with the help of 
this display [95]. 

v. T-Distributed Stochastic Neighbour 
Embedding (t-SNE):This dimensionality 
reduction approach is frequently used 
to visualize high-dimensional data in a 
lower-dimensional environment. It is 
very helpful for exploratory data 
analysis and pattern recognition in 
chalcogen bond characterisation. For 
example, in chalcogen bond analysis, t-
SNE is used to minimize the 
dimensionality of the dataset while 
maintaining the local structures and 
connections between chalcogen-bonded 
complexes. The reduced data can then 
be displayed in a two-dimensional 
space, emphasizing clusters or groups 
of related complexes [96]. 

The underlying structures and patterns in 
chalcogen bond characterisation can be 
explored and understood using unsupervised 
learning techniques including K-Means, 
hierarchical clustering, DBSCAN, SOM, and t-
SNE. Without the need for labelled data, these 
methods allow researchers to identify patterns 
and clusters among chalcogen-bonded 
complexes. To better comprehend this crucial 
non-covalent interaction and its applicability in 
numerous scientific domains, researchers can 
use unsupervised learning to gather insightful 

knowledge about the diversity and structure of 
chalcogen bonding interactions [97]. 

Interpretability and Visualization of Machine 
Learning Results 

Characterizing chalcogen bonding interactions 
depends heavily on the interpretability and 
indicating machine learning outcomes. 
Understanding the rationale behind machine 
learning models' predictions becomes more 
crucial as they get more complicated and 
sophisticated. Researchers can learn more 
about the models' decision-making processes, 
which characteristics are most important for 
making predictions, and whether the model 
accurately depicts the underlying scientific 
ideas underpinning chalcogen bonding [97]. 
The use of visualization, on the other hand, 
offers a potent tool for representing highly 
dimensional data and modelling results in a 
manner that is more accessible and 
straightforward. Learning the underlying 
chemistry of chalcogen bonding interactions 
and comprehending the factors impacting 
model predictions require the interpretation of 
machine learning models in chalcogen bonding 
analyses. To analyze machine learning models 
used in chalcogen bonding studies, a variety of 
methodologies can be used: 

1. Feature Importance Analysis:This 
technique identifies the most important 
attributes that have a big impact on the 
model's predictions. These methods 
offer a numerical assessment of each 
feature's impact on the model's output 
[98]. 

a. Permutation Feature Importance:This 
technique includes randomly rearranging the 
values of distinct features and gauging how 
much the performance of the model suffers as a 
result. The most crucial features are those 
whose performance suffers the greatest when 
they are shuffled. For instance, permutation 
feature importance demonstrates that the bond 
length between the chalcogen atom and the 
Lewis base acceptor is the feature that has the 
greatest impact on a random forest model that 
predicts the strength of chalcogen bonds [99]. 
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 b. SHAP (SHapley Additive exPlanations):By 
taking into account all potential feature 
interactions, SHAP values offer a single 
measure of feature relevance. They quantify 
how much each attribute contributes to a 
particular prediction in relation to how much it 
contributes to other predictions. A certain 
geometric parameter in a chalcogen-bonded 
complex, for instance, has a greater positive 
SHAP value according to SHAP analysis, 
indicating that it has a considerable positive 
influence on the model's prediction of strong 
chalcogen bonding.  

2. Partial Dependence Plots (PDPs):PDPs 
illustrate how the expected result 
changes when a particular feature is 
varied while holding all other features 
constant. PDPs aid in comprehending 
the connection between particular 
features and the model's forecasts. For 
example, a partial dependence plot for 
the bond angle between the Lewis base 
acceptor and the chalcogen atom 
reveals that as the bond angle increases, 
the projected strength of the chalcogen 
bonding gradually decreases [100]. 

3. SHAP Summary Plots:SHAP summary 
plots show the average influence of each 
feature across all predictions in the 
dataset, giving a broad perspective of 
feature relevance. They aid in 
determining which characteristics 
influence the model's predictions most 
consistently. An illustration of a SHAP 
summary plot shows how the partial 
charge on the chalcogen atom 
consistently influences the model's 
predictions of the strength of the 
chalcogen bond. 

4. Rule-Based Methods:Rule-based models, 
such decision trees and rule-based 
classifiers, offer understandable, 
interpreted models. On the basis of the 
input features, they produce 
transparent decision rules. When the 
length of the chalcogen-acceptor bond is 
below a particular threshold and the 
partial charge on the chalcogen atom is 

negative, a decision tree model predicts 
that a chalcogen bond is likely to form 
[101]. 

Visualization tools for chalcogen bonding 
characterization 

a. 3D Complex Visualization:Researchers can 
better comprehend the spatial properties and 
structural arrangements of chalcogen bonding 
interactions by visualizing chalcogen-bonded 
complexes in three dimensions. The spatial 
orientation of the chalcogen and Lewis base 
atoms, the bond angles, and the presence of 
hydrogen bonds or other secondary 
interactions in the chalcogen-bonded complex 
can all be seen by researchers using 3D 
visualization tools [102]. 

b. t-SNE and UMAP:Dimensionality reduction 
methods such as t-SNE (t-distributed Stochastic 
Neighbor Embedding) and UMAP (Uniform 
Manifold Approximation and Projection) are 
used to visualize high-dimensional data in a 
lower-dimensional space and reveal clusters or 
groupings of related chalcogen-bonded 
complexes. Examples include the identification 
of discrete clusters of chalcogen-bonded 
complexes with related characteristics using t-
SNE or UMAP, which can shed light on the 
various forms or intensities of chalcogen 
bonding interactions. 

c. Interactive Visualizations:With the aid of 
interactive visualization tools, researchers can 
examine the data, adjust model parameters, and 
see in real time how features affect model 
predictions. To better understand the 
energetics of chalcogen bonding, researchers 
can alter geometric factors of a complex that is 
chalcogen-bonded and see how the interaction 
energy changes as a result [103].  

d. Heatmaps and Plots:By providing a visual 
depiction of feature interactions and 
correlations, heatmaps and plots allow 
researchers to pinpoint connections between 
certain features and the results of chalcogen 
bonding. A heatmap illustration showing the 
link between bond lengths and partial charges 
in a dataset of chalcogen-bonded complexes 
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 shows which properties are more common in 
interactions that are either strong or weak 
[104]. 

Characterizing chalcogen bonding interactions 
requires machine learning findings to be 
interpretable and visually appealing. These 
features help to deepen our understanding of 
chalcogen bonding patterns and advance the 
development of novel materials and 
pharmaceuticals based on this significant non-
covalent interaction. They also offer 
transparency and insights into the decision-
making process of machine learning models 
[105]. 

Applications of Machine Learning in Chalcogen 
Bonding Studies 

Chalcogen bonding studies have made 
extensive use of machine learning techniques, 
which has helped scientists learn more about 
the nature, characteristics, and practical uses of 
chalcogen bonding interactions [106]. In 
chalcogen bonding investigations, machine 
learning has found major uses in: 

1. Chalcogen Bonding Interaction 
Prediction:To predict the presence, 
strength, or type of chalcogen bonding 
in new molecular structures, machine 
learning models can be trained on 
datasets containing chalcogen-bonded 
complexes with labelled interactions. 
This prediction ability is especially 
beneficial for screening and spotting 
potential chalcogen bonding 
interactions in novel materials, drug 
candidates, and catalysts. 

2. Characterization of Chalcogen Bond 
Strength:Understanding the influence of 
chalcogen bonds on molecular 
characteristics and reactivity depends 
on being able to quantify the strength of 
chalcogen bonds. Based on geometric, 
electrical, and energetic properties, 
chalcogen bond strengths can be 
predicted using machine learning 
algorithms, such as regression models 
or neural networks [107]. 

3. Structure-Property 
Relationship:Chalcogen-bonded 
complexes and particular physical, 
chemical, or biological features can be 
related in terms of their structure 
through the use of machine learning. 
Machine learning models are able to 
pinpoint crucial characteristics that 
affect how properties vary and can help 
with property optimization by learning 
from big datasets [108]. 

4. Chalcogen Bonding Motif 
Identification:Recurring patterns and 
motifs in chalcogen bonding 
interactions can be found using machine 
learning algorithms. The preferred 
geometry and electrical characteristics 
of chalcogen bonds in particular 
chemical conditions may be learned 
from these motifs [109]. 

5. Analysis of Chalcogen-Bonded 
Supramolecular Assemblies:The 
production of supramolecular 
assemblies and materials frequently 
depends on chalcogen bonding. In order 
to create new materials with the 
appropriate features, machine learning 
can help analyze the stability and 
characteristics of these assemblies. 

6. Chalcogen-Bonding Catalyst Rational 
Design:Chalcogen bonding has been 
investigated as a potent method for 
designing catalysts. By predicting the 
catalytic performance of chalcogen-
bonding catalysts based on structural 
and electrical characteristics, machine 
learning can help with the rational 
design of these materials. 

7. Exploration of Chalcogen Bonding in 
Crystal Engineering:Chalcogen bonding 
can affect the packing and 
characteristics of crystals in crystal 
engineering. Understanding the effects 
of chalcogen bonding on crystal 
structures and characteristics might aid 
in the optimization of materials for 
particular applications [110]. 
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 Overall, machine learning has emerged as a 
crucial tool in chalcogen bonding research, 
allowing scientists to quickly analyze sizable 
datasets, forecast chalcogen bonding 
interactions, gain understanding of the 
structure-property relationships, and develop 
novel materials and pharmaceuticals with 
improved properties. Machine learning 
methods are projected to advance in chalcogen 
bonding research as they develop, helping to 
advance a variety of scientific disciplines [111]. 

Advantages of Machine Learning over 
Experimental and Computational Methods 

In many scientific fields, machine learning has 
a number of advantages over conventional 
experimental and computational techniques. 
These benefits result from its capacity to 
recognize patterns, extrapolate generalizations 
from data, and forecast events without explicit 
programming [112]. The following are some 
significant benefits of machine learning over 
conventional methods:Compared to 
conventional experimental or computational 
approaches, machine learning can process 
enormous amounts of data rapidly and 
efficiently, allowing researchers to examine 
complicated issues at a considerably faster rate 
[113]. When working with huge datasets or 
high-dimensional data, where conventional 
methods may be computationally expensive 
and time-consuming, this efficiency is very 
important. Machine learning automates feature 
extraction, model training, and prediction, 
requiring less manual intervention and 
conserving resources. Because of the time and 
resource savings from this automation, 
researchers can concentrate on more complex 
activities and problem-solving instead of 
tedious, time-consuming jobs [114-115]. 

Machine learning algorithms have the ability 
to recognize complicated and nonlinear 
correlations in data, which may be difficult for 
conventional approaches to do. Because of its 
adaptability, machine learning can tackle more 
challenging scientific issues involving nonlinear 
relationships between variables [116].  Machine 
learning discovers patterns from data instead of 
relying on explicit models or assumptions like 

traditional methods do. This data-driven 
methodology enables the identification of 
hidden patterns and insights that might not be 
visible in theory-driven models [117]. Machine 
learning algorithms are robust in situations 
where traditional approaches may find it 
difficult to produce correct findings owing to 
data constraints. Machine learning techniques 
are suited for big data applications across a 
range of scientific disciplines because they are 
easily scaled to accommodate vast and 
complicated datasets. As new data becomes 
available, machine learning models can be 
updated and improved, enabling continual 
improvement and adaption to altering settings 
or knowledge [118-120]. 

To produce thorough analyses and 
predictions, machine learning can efficiently 
integrate data from multiple sources, including 
experimental data, computer simulations, and 
external databases. Exploratory data analysis is 
made possible by machine learning, which 
helps researchers to spot patterns, trends, and 
connections in data that might not have been 
apparent using more conventional approaches 
[121]. Optimization and hyperparameter tuning 
are two machine learning strategies that are 
frequently used to fine-tune model 
performance and help researchers get the best 
outcomes for particular tasks [122-126]. 

Machine learning is an effective tool for 
tackling challenging scientific problems, 
processing big datasets quickly, and drawing 
insightful conclusions from data due to its many 
benefits over conventional experimental and 
computational approaches. Machine learning is 
an essential tool in many scientific fields, from 
chemistry and materials science to biology, 
medicine, and beyond, due to its capacity to 
automate operations, manage nonlinearities, 
and continuously improve models [127]. 

Conclusion 

Machine learning has been a revolutionary 
and potent method for characterizing chalcogen 
bonding interactions. In numerous chemical 
and biological processes, chalcogen bonding-a 
crucial non-covalent interaction involving 
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 elements like oxygen, sulfur, selenium, and 
tellurium-plays a critical role. Chalcogen 
bonding is a crucial non-covalent interaction 
that plays a significant role in various chemical 
and biological processes. Experimental 
techniques, such as infrared (IR), nuclear 
magnetic resonance (NMR) spectroscopy, and 
X-ray crystallography, have been used to study 
chalcogen bonding, but they often suffer from 
inherent experimental challenges. 
Computational approaches, including quantum 
mechanics (QM) and molecular dynamics (MD) 
simulations, offer valuable insights into the 
electronic structure and energetics of chalcogen 
bonding, but they can be computationally 
demanding and may not fully encompass the 
diversity of chalcogen bonding interactions. 
Machine learning has emerged as a powerful 
tool for studying molecular interactions, 
including chalcogen bonding. By integrating 
experimental data and computational results, 
machine learning models offer a holistic 
approach to understanding chalcogen bonding 
in various molecular systems. Machine learning 
algorithms, such as supervised and 
unsupervised learning, can be employed to 
classify and predict chalcogen-bonded 
complexes using neural network potentials to 
assess the persistence of chalcogen bonds in 
solution and ML models to predict two key 
solid-state synthesis conditions that must be 
specified for chalcogenide glasses. The 
integration of experimental and computational 
data maximizes the accuracy and applicability 
of machine learning models and envisions a 
promising future for machine learning in 
characterizing chalcogen bonding interactions. 
Chalcogen bonding research has been 
transformed by the use of machine learning to 
experimental and computational techniques, 
yielding fresh perspectives and quickening 
scientific advancement in this area. The ability 
of machine learning to process huge and 
complicated datasets quickly is one of its main 
advantages. Machine learning models have the 
ability to examine enormous volumes of data 
from computational simulations and 
experimental measurements, revealing subtle 
patterns and correlations that might not be 
seen using conventional methods. It is possible 
to anticipate and characterize chalcogen bonds 

in novel chemical systems using machine 
learning models that can recognize significant 
geometric, electrical, and energetic properties 
that control chalcogen bonding interactions. 
Another important factor that improves our 
comprehension of chalcogen bonding is the 
interpretability of machine learning outcomes. 
Understanding the variables affecting the 
nature and strength of chalcogen bonds is 
possible with the use of methods like feature 
importance analysis and partial dependence 
plots. The discovery of important molecular 
descriptors that control chalcogen bonding 
interactions is made easier by this 
interpretability, which helps in the rational 
design and optimization of molecular systems 
with particular chalcogen bonding properties. 

Machine learning has evolved into a crucial 
technique for characterizing chalcogen bonding. 
Our understanding of chalcogen bonding 
interactions has been completely transformed 
by its capacity to handle and learn from data, 
give interpretability, and combine different 
information sources. It is anticipated that the 
uses of machine learning in chalcogen bonding 
investigations will expand as machine learning 
techniques develop and more data becomes 
accessible, leading to new discoveries and 
improvements across a range of scientific fields. 
In the end, the use of machine learning in 
chalcogen bonding characterisation opens the 
door to the design and optimization of 
molecular systems with specialized 
functionalities and characteristics for a variety 
of real-world uses. The use of machine learning 
in chalcogen bonding has completely changed 
how scientists see, describe, and foresee 
chalcogen bonding interactions. In order to 
better understand the nature and features of 
chalcogen bonding, which is essential to many 
chemical and biological processes, scientists 
have combined experimental and 
computational methodologies. In comparison to 
conventional experimental and computational 
approaches, machine learning has shown to be 
an effective technique for chalcogen bond 
characterisation. With its help, enormous 
datasets can be analysed effectively, chalcogen 
bonding interactions can be predicted quickly, 
and important factors affecting the strength and 
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 characteristics of chalcogen bonds may be 
found. Researchers have been able to 
investigate complex molecular systems and 
detect tiny chalcogen bonding patterns that 
were previously difficult to identify thanks to 
machine learning models' capacity to learn 
patterns, generalize from data, and handle 
nonlinear interactions. Through the provision 
of a thorough and all-encompassing method to 
investigate these interactions, the integration of 
experimental data with computational models 
has significantly improved our understanding 
of chalcogen bonding.  

Overall, the combination of machine learning 
with research on chalcogen bonds has sped up 
scientific advancement and opened up new 
possibilities for the construction and 
improvement of molecular systems with 
particular properties and capabilities. There is a 
progress in comprehending chalcogen bonding 
by utilizing the benefits of machine learning, 
leading to advancements in areas including 
drug design, crystal engineering, catalysis, and 
materials sciences.  The scope and effect of 
machine learning in chalcogen bonding 
investigations are anticipated to grow as these 
techniques continue to advance and more data 
becomes accessible. The full potential of 
chalcogen bonding interactions and its 
applications across several scientific fields can 
be revealed by the seamless integration of 
experimental data, computational simulations, 
and machine learning models. In the end, the 
combination of human expertise and machine 
learning capabilities promises a deeper 
comprehension of chalcogen bonding and the 
capacity to harness its strength in the design 
and development of novel molecular systems 
for various applications. 
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