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A B S T R A C T 
 

In this work, the neutron-induced fissile isotopes of Uranium-235 using the 
Coupled-Channelled Optical Model code (OPTMAN) code up to 20 MeV. The high 
demand for nuclear reactor fuels has necessitated this research. As one of the 
major naturally occurring radionuclides with lots of fuel prospect, Uranium-235 
occur in 0.71%. Two steps process away from Uranium-235 of neutron capture 
can produce fissile materials to be used as reactor fuel. Though, Uranium-235 is 
not with them self a fissile material, but they are breeder reactor fuels. 
Computations were done for both the Potential Expanded by Derivatives (PED) 
which account for the Rigid-Rotor Model (RRM) that treat nuclei as rigid vibrating 
sphere as well as account for nuclear volume conservation and Rotational Model 
Potentials (RMP) which account for the Soft-Rotator Model (SRM) that treat nuclei 
as soft rotating spherical deformed shapes. Each of the calculated data was 
compared with the retrieved data from the Evaluated Nuclear Dada File (ENDF) 
which was found to be in good agreement. The threshold energies in all cases were 
found to be ≤ 4 MeV for both PED (Potential Expanded by Derivatives) and RMP 
(Rotational Model Potentials). It is observed that results from RMP much better 
agreed with the retrieved data than the one obtained from PED. 
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Introduction  

he needs for Fissile isotopes of 
uranium are due to their practical 
applications. These isotopes or 
materials can be used as fuel in 

nuclear reactors of both power plants and 
research reactors, as they can be split by 
neutrons in a self-sustaining nuclear chain 
reaction. The amount of energy released during 
these reactions is large enough to generate 
electricity. Aside from being used as nuclear 
reactor fuels, fissile materials can undergo 
fission reaction processes. They are the key 
components of nuclear weapons or other 
nuclear explosives devices. Those mostly used in 
nuclear weapons are highly enriched uranium 
(uranium-235 and plutonium-239). However, 
this research is for nuclear research reactor 
application. As such, we shall focus on nuclear 
reactor fuels [1-4]. It is pertinent to search for 
alternative fuel means in some isotopes that are 
radioactive aside the uranium-235 and 
plutonium-239. We may recall that the two most 
important fissile materials normally used as 
fuels are uranium-235 and Plutonium-239. 
These are weapon-grade materials that can also 
be used as reactor fuels. Uranium 235 is a 
natural isotope of uranium with an abundance of 
0.72%. This concentration is very small. Nuclear 
physicists have made efforts to increase this 
concentration through the enrichment process. 
However, due to the prevalent need for reactor 
fuels, we ought to seek alternative isotopes that 
can be used as fuels [5-8]. 

The fissile materials plutonium-239 and 
uranium-233, which do not occur in nature, are 
produced by the transmutation of uranium-238 
and thorium-232, respectively. These materials 
are called fertile materials. For fuel cycles using 
plutonium-239 and uranium-233 as fuel, 
irradiation of uranium-238 and thorium-232 in 
the fuel blanket and reprocessing to extract the 
plutonium-239 and uranium-233 become 
important steps in the cycle [9-11]. Plutonium-
239 is not a natural isotope of plutonium. It is 
bred from the naturally occurring uranium-238 
whose natural abundance is 99.9%. Uranium-
238 is irradiated by fast neutrons to produce 
Uranium-239 and this Uranium-239 can 
undergo a radioactive decay to produce 

Plutonium-239. Plutonium-239 just like 
Uranium-235 is a fissile material. The 
Plutonium-239 can then be bombarded with 
high-speed neutrons. When a Plutonium nucleus 
absorbs one such free neutron, it splits into two 
fission fragments. This fission action releases 
heat as well as neutrons, which in turn splits 
other plutonium nuclei present, freeing still 
more neutrons. As this process is repeated, it 
becomes a self-sustaining chain reaction, 
yielding a steady source of energy, chiefly in the 
form of heat which is transported from the 
reactor core by a liquid sodium coolant to a 
system of heat exchange. This system utilizes 
heat to produce steam for a turbine that drives 
an electric generator [12-14]. 

Uranium-233 is a fissile isotope of uranium that 
is bred from thorium-232 as part of the thorium 
fuel cycle. Uranium-233 was investigated for use 
in nuclear weapons and as reactor fuel. It has 
been successfully used or tested in experimental 
nuclear reactors and has been proposed for 
much more or wider use as nuclear fuel. It has a 
half-life of 160,000 years [15-17]. Uranium-233 
is produced by neutron irradiation of thorium-
232. When thorium-232 absorbs a fast neutron, 
it becomes thorium-233 with a half-life of 22 
minutes. After 22 minutes, thorium-233 decay 
by beta to protactinium 233 with a half-life of 27 
days, and beta decays to uranium 233. Just like 
uranium-235 and plutonium 239, uranium-233 
has been proposed to be used as nuclear fuel as 
asserted above. The only challenge with 
uranium-233 is that; its fission on neutron 
capturing, but, sometimes retain the neutron to 
become uranium-234 which is a fertile material 
[18,19]. Therefore, uranium-235 being naturally 
occurring isotope, is a breeder fissile material 
[20,21]. 

A research was conducted by Avrigeanu and 
Avrigeanu (2019) [22] on the analysis of 
neutron bound states of 208Pb by a dispersive 
optical model potential, in their research, they 
discussed the effect of dispersive-correction 
terms on the calculation of the bound-state 
energies and finally reported that, the derived 
208Pb root mean square radius shows good 
agreement with measured data. Another 
research was carried out by Avrigeanu and 
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 Avrigeanu et al. (2021) [23] on the dispersive 
optical model description of nucleon scattering 
on Pb–Bi isotopes and reported that the new 
potential is shown to give a very good 
description of nucleon scattering data on near-
magic targets 206,207Pb and 209Bi. 

This work investigates the effects of excitation 
in neutron induced fissile isotopes of uranium 
for 20 MeV using Coupled-Channels Optical 
Model OPTMAN code with adjustment for soft 
and rigid rotation of the nucleus. 

Theory 

The current optical potential encompasses 
corrections (relativistic) as reported by 
Avrigeanu and Avrigeanu (2022) [24] and 
expanded by Avrigeanu and Avrigeanu et al. 
(2018) [25]. 

Surface variation 𝑊𝐷(𝐸) and potential for 
volume absorption 𝑊𝑉(𝐸) can wisely be 
presented in terms of energy which could be 
suitable for the dispersive optical model analysis 
[26,27]. The most utilized energy (dependence) 
for the surface (imaginary) term has been 
pointed out by Avrigeanu and Avrigeanu et al. 
(2023) [28], as defined in Equation (1): 

𝑊𝐷(𝐸) = 𝐴𝐷 [
(𝐸−𝐸𝐹)−2

(𝐸−𝐸𝐹)−2+(𝐵𝐷)2 − exp(−ℷ𝐷(𝐸 − 𝐸𝐹))]                                                             (1) 

Where, 𝐴𝐷, 𝐵𝐷, and 𝜆𝐷 are constants 
(undetermined), as well as E and Ef are Proton 
and femi energy, respectively. 

Another utilized energy (dependence) for the 
surface (imaginary) term has been pointed out 
by Naik et al. (2021) [29] Naik et al. (2020) [30], 
as follow: 

𝐴𝐷,𝑉 = 𝑊𝐷,𝑉
𝐷𝐼𝑆𝑃 [1 + (−1)𝑍′ + 1

𝐶𝑤𝑖𝑠𝑜,𝑤𝑣𝑖𝑠𝑜𝑁−𝑍

𝑊𝐷,𝑉
𝐷𝐼𝑆𝑃    𝐴

]            (2) 

Where, 𝑊𝐷,𝑉
𝐷𝐼𝑆𝑃and 𝐶𝑤𝑖𝑠𝑜,𝑤𝑣𝑖𝑠𝑜 are constants 

(undetermined), and also A, N, and Z are mass, 
neutron, and atomic number, respectively. 

Utilized energy (dependence) for the volume 
(imaginary) term has been confirmed in studies 
of nuclear matter theory by Gopalakrishna et al. 
(2018) [31]. 

𝑊𝑉(𝐸) = 𝐴𝑉
(𝐸−𝐸𝐹)2

(𝐸−𝐸𝐹)2+(𝑊𝑉
𝐷𝐼𝑆𝑃)2                             (3) 

Where, 𝐴𝑉  and 𝑊𝑉
𝐷𝐼𝑆𝑃 are constants 

(undetermined), as well as E and Ef are proton 
and femi energy, respectively [31]. 

Method 

The OPTMAN code for this work was 
downloaded from the IAEA website at 
http://nds-IAEA.org. The optical model code 
OPTMAN was chosen because it can study 
nucleon interactions with light-mass, medium-
mass, and heavy-mass nuclei for a broad range 
of energy up to 200 MeV. Furthermore, it has a 
Soft-Rotator Model in addition to its Rigid-
Rotator Model, which improves the precision of 
the even-even nuclide. 

The selection of the appropriate record cards 
and switches determines how the code will run 
when the software has been successfully 
installed using the G-FOTRAN compiler. Record 
cards that describe input data are themselves 
described by switches for the description of the 
model. The "va" executable file is used to invoke 
each calculation's input data and is produced 
using the Windows command. 

The code is executed immediately the 
command "va" is issued, the input file name is 
requested and supplied, the output file name is 
requested and supplied, and the enter key is 
pushed. The OPTMAN code computation was 
based on Equations (1) to (6). 

Results and Analysis 

The results obtained from the computer 
software (OPTMAN Code) based on Equations 
(1) to (6) for Rotational Model Potential (RMP) 
which accounts for Soft-Rotator Model and 
Potentially Expanded by Derivatives (PED) 
accounts for Rigid-Rotor Model by calculating 
the neutron-induced Total Potentially Expanded 
by Derivatives (TPED) and Total Rotational  

http://nds-iaea.org/
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Table 1 Results obtained for Soft and Rigid-Rotor Model for Uranium-235 (235U) 
Cross Section (Reaction) Cross Section (Elastic) Cross Section (Total) 

Energy (MeV) PED RMP ENDF PED RMP ENDF PED RMP ENDF 

4.00 1.81 1.76 1.69 1.78 1.87 4.71 3.67 3.63 6.40 
5.00 1.66 1.62 1.57 1.95 2.07 4.51 3.68 3.69 6.08 
6.00 1.63 1.59 1.64 2.14 2.29 4.18 3.85 3.88 5.82 
7.00 1.65 1.61 2.07 2.32 2.48 3.63 4.05 4.09 5.70 
9.00 1.65 1.61 2.28 2.52 2.68 2.86 4.24 4.29 5.14 
10.0 1.63 1.58 2.26 2.53 2.67 2.67 4.22 4.26 4.93 
12.0 1.58 1.53 2.18 2.41 2.50 2.70 4.05 4.04 4.88 
14.0 1.56 1.52 2.33 2.19 2.24 2.82 3.80 3.76 5.15 
16.0 1.57 1.54 2.45 1.94 1.97 3.02 3.56 3.51 5.47 
18.0 1.58 1.56 2.36 1.72 1.73 3.32 3.35 3.29 5.68 
20.0 1.57 1.56 2.29 1.53 1.54 3.55 3.15 3.10 5.84 

 

 

 

Figure 1 Cross-section (Total) of Urainum-235 (235U) 

Model Potential (TRMP), Reaction Potentially 
Expanded by Derivatives (RPED), Reaction 
Rotational Model Potential (RRMP), Elastic 
Potentially Expanded by Derivatives (EPED), 
and Elastic Rotational Model Potential (ERMP) 
cross section reactions for 235U are presented in 
Table 1. 

 To compare the obtained results from this 
study with retrieved data (TENDF), charts for 
the computation of the excitation function for 
the cross-section (Total), cross-section 

(Reaction), and cross-section (Elastic) of 235U are 
plotted and presented in Figures 1, 2, and 3. 
Referring to Figure 1, the excitation function of 
the total cross section induced by neutrons in 
235U displays a consistent pattern: an escalation 
from 4 to 9 MeV followed by a decline from 9 to 
20 MeV. Notably, the outcomes derived from the 
Total Rotational Model Potential (TRMP) exhibit 
a higher degree of concurrence with the data 
obtained from the Thermal Neutron-Induced 
Fission Data File (TENDF), in comparison to the 
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 outcomes produced by the Total Potential 
Expanded by Derivatives (TPED). 

 

Figure 2 Reaction cross-section of Urainum-235 (235U) 

 

 

Figure 3 Elastic cross-section of Urainum-235 (235U) 

In addition, the impact of rotational excitation 
becomes more conspicuous, with the Rotational 
Model Potential emerging as the optimal 
approach for effectively accounting for this 
phenomenon. 

As depicted in Figure 2, the excitation function 
of Uranium-235 exhibits a noteworthy 
alignment between the Potential Expanded by 
Derivatives (RPED) and the Rotational Model 
Potential (RRMP), particularly within the energy 
range of 4-6 MeV, as evidenced by the 
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congruence with the established reference data 
(RENDF). This alignment suggests that the 
threshold energy for neutron-induced reactions 
in both RPED and RRMP lies at ≤ 4 MeV. 

However, a marked disparity arises between 
the calculated PED values and the established 
ENDF standard data within the energy span of 6-
12 MeV. Notably, the results derived from the 
Rotational Model Potential exhibit superior 
accord with the reference data (RENDF) when 
contrasted with the outcomes obtained from the 
Potential Expanded by Derivatives. This 
underscores the capacity of the Rotational 
Model Potential to effectively characterize the 
dynamic alterations in the nuclear structure 
brought about by rotation. 

As depicted in Figure 3, a noteworthy 
correspondence is evident in neutron-induced 
elastic scattering between the Potential 
Expanded by Derivatives (EPED) and the 
Rotational Model Potential (ERMP), specifically 
within the energy intervals of 4 to 6 MeV and 10 
to 20 MeV, where alignment with the retrieved 
reference data (EENDF) is observed. However, a 
lack of consensus emerges between EPED and 
the established EENDF standard data within the 
energy span of 6 to 9 MeV. 

This discrepancy underscores the efficacy of 
the Rotational Model Potential, which 
incorporates the soft-Rotor model of the 
Coupled-channels Optical Model, in effectively 
elucidating the impact of excitation-induced 
rotation on neutron capture. Notably, this 
approach exhibits a stronger concurrence with 
the reference data (EENDF), solidifying its 
suitability for describing the intricate interplay 
between rotation and neutron interactions. 

Conclusion  

A coupled-channel optical model OPTMAN 
code was used to investigate the effects of 
neutron-induced fissile isotopes of Uranium-
235. Optical model computations were carried 
out via the OPTMAN code using the Coupled-
Channel Rotational Model Potential (CC-RMP) 
which describe the Soft-Rotor Model that treat 
nuclei as soft rotational sphere or deformed 
nuclei and Potential Expanded by Derivatives 
(CC-PED) which described Rigid-Rotor Model 
that treat nuclei as rigid vibrating sphere and 

account for nuclear volume conservation. From 
the computations performed for both PED and 
RMP, the energies agreed with the standard 
retrieved data (ENDF) are observed to be 4 MeV. 
It was revealed also that the obtained results of 
using Rotational Model Potential (RMP) are 
generally higher and are in better agreement 
with the standard ENDF data than those 
obtained from the Potential Expanded by 
Derivatives (PED). 

However, results using both PED and RMP for 
elastic scattering cross sections are generally 
higher for 235U and showed better agreement 
with the retrieved ENDF data. Furthermore, the 
Odd-A nuclides tend to have higher cross section 
values when compared with the Even-A 
nuclides. Since the oddness of both Z and N tends 
to lower the nuclear binding energy, making odd 
nuclei less stable and more likely to undergo 
fission, all odd-A nuclei used in this research 
could be best for reactor fuel, except for the 
fissionable but not fissile materials. It is 
therefore recommended that, the odd-A nuclei 
used in this work be tested as reactor fuel. 
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