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A B S T R A C T 
 

 In general, the stability of the power system can be considered a feature of the 
system that enables it to remain in equilibrium under normal conditions and 
regain a different acceptable state if affected by disturbance. Instability in a 
power system may take many forms, depending on the composition of the 
system and its operating modes. In order to evaluate the proposed method in 
damping transient fluctuations and network stability, a study has been carried 
out on a typical network. Since the topic of the article is in the field of transient 
stability, in part of the paper, braking resistance modeling in transient stability 
studies has been investigated. In the section on brake resistor control, brake 
resistor control is introduced by a switched Thyristor, using the trapezoidal 
method. Finally, the simulation results of the studied network are presented with 
the presence of TCBR and its capability of damping in the desired network. 

  
 

Introduction 

n recent years, the use of FACTs as 
controllable components has increased the 
capacity of existing transmission lines, 
thus avoiding or at least delaying the need 
to install new lines that are often confined 

to economic and environmental reasons. In 
addition to increasing the capacity of the 
transmission system, the complementary 
controls added to these FACTs equipment 
attenuates inter-region fluctuations [1-6]. 

Although power system stabilizers have been 
widely used to provide additional attenuation 
in inter-region oscillations of the power system, 
the potential of complementary damping 
controllers in FACTs devices has been 
confirmed than the power system stabilizers [7-
9].  

Modern power systems are large and complex 
systems that are exploited under economic 
pressures in a restructured competitive 
environment. These pressures cause the power 
system to operate under conditions very close 
to the security limits that may not be well-
identified. During normal operation of the 
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 power system, there is a balance between the 
mechanical power input to each power plant 
unit and the output electrical power plus loss. 
The problem arises when a sudden disturbance 
causes changes in the output of electrical 
power. These disorders can include events such 
as the occurrence of short circuits on lines or 
generator-connected chains. The magnitude of 
the disturbance is determined by the output 
power loss and sudden acceleration. Brake 
resistor is a high energy loss resistor in a short 
period that rapidly enters the circuit at the time 
of the fault such as a resistor load and absorbs 
accelerator energy generated by the fault and 
increases power consumption. A study [10] 
employed an approach based on the use of 
FACTS devices to improve the stability of power 
systems. For this purpose, using a conventional 
controller and a fuzzy logic controller based on 
braking resistance, the transient stability 
improvement of a synchronous generator in a 
single machine and then a multi-machine is 
investigated. Based on a previous study [11-13], 
a two-layer control structure, designated as a 
Thyristor-controlled braking resistor (BR) 
control system, was proposed for the operation 
of a multi-machine power system in transient 
conditions. In this method, multiple local 
physical controllers are introduced in the 
network load settings and power transfer 
modes after a severe disturbance on the rotor 
angle and rotor speed of each generator and the 
firing angle of each Thyristor controls the time 
and amount of BR. For the introduced case, the 
damping is increased and the stability margin is 
increased. The results obtained in this method 
show that the controller is capable of 
controlling the system when instability 
conditions are occurring. In another study [14], 
two different new brake models are presented, 
one involving a Thyristor rectifier and the other 
involving a combination of a diode rectifier and 
a cutter whose performance is compared with 
the current Thyristor controlled brake resistor. 
In this comparison, an index of speed 
performance of the number of components 
used, heat loss and harmonics simulation for 
each model is presented and the final model is 
introduced. The effectiveness of the proposed 
method has been tested through 

Matlab/Simulink simulation concerning 
unbalanced and temporal errors in the power 
system. Also using Thyristor-controlled braking 
resistor and fuzzy logic has been used to 
increase transient stability in a multi-machine 
power system [15]. In this method, the time 
derivative of total kinetic energy deviation is 
used as a fuzzy controlled input for braking 
resistance switching. It is noted in this paper 
that the time derivative function as a controller 
input, to reduce installation costs as well as the 
computational burden, reduces the use of brake 
resistor numbers in appropriate locations 
rather than installing any braking resistor. The 
bus terminal becomes each generator. 
According to a study [16], two brake resistor 
models, one consisting of a Thyristor rectifier 
and the other consisting of a combination of a 
diode rectifier and a system breaker, are 
presented. In this case, their performance is 
compared with the existing braking resistance. 
In a study [17-22], it has been used to model 
and adjust the hydro turbine governor and 
design of dynamic braking resistors to improve 
transient stability in the generator. In the study, 
the dynamic braking resistance proposed by the 
combination of the existing governor regulator 
is used to improve the stability of the generator 
stability margin as a transient stability 
criterion. The simulation results show that the 
proposed method to avoid generator speeds 
exceeding the limit when a severe fault 
occurring in the power system can be avoided 
by removing all or part of the load. 

Introducing the Proposed Network with TCBR 
Presence  

Brake resistance is a resistor that can be cut 
and connected with a Thyristor and its effective 
amount in the circuit can be changed. To 
investigate the presence of TCBR in the power 
grid, a typical grid is introduced as illustrated in 
Figure 1 [23-29], The target network is an 
infinite single-machine network, which is 
intended to investigate the presence of TCBR in 
the network. In the presented network, it is 
assumed that the TCBR is mounted on the 
generator bus to aid in the attenuation of 
possible fluctuations. An overview of the 
network studied is shown in Figure 1.
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Figure 1 The studied network in the presence of TCBR 

 

Braking Resistance Modeling in Transient 
stability  

The braking resistance modeling process is 
introduced to investigate the transient stability 

of the introduced equations. Consider the 
network order shown in Figure 2.

 
Figure 2 The target network with the presence of TCBR to study the transient stability 

 

In accordance with Figure 2, we have: 

IL = ILine                

IBR = IBreaking Resistor          

Network admittance matrix of the single 
machine connected to an infinite bus are: 

                                                                                  (1)                          

(2) 

Depending on the network, we have: 

 

 

(3) 

 
  

Reduced Network Admissions Matrix: 
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(6) 

 

(7) 
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(11)  

 

(12) 

(13) 

 

Finally, the matrix form of the equations is: 

(14) 
 

 

 

Generator Equations: 

 

(15)  

 

Matrix Form of Generator Equations: 

(16)  

 

By pasting in the Idq relation, we have: 

(17) 

 

(18) 

 

By embedding the Idq relationship, we will have: 

                                                                                    (19) 
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Simulation Output Analysis on the Sample 
Network 

In this section, a short circuit fault scenario is 
applied to the desired grid under the presented 
relationships and the ability of TCBR to dampen 
the oscillations of the synchronous generator is 
investigated. The parameters of the generator 
and transmission lines are considered by Table 
1 and 2. Also, the information obtained from 
system load propagation studies is provided in 
Table 3 to obtain the starting point of the 
system [30-35], 

Table 1 Generator parameter values and AVR control coefficients 

Generator's Parameters 

Xd Steady state direct-axis reactance 1.2 

Xq Steady state quadrature reactance 0.8 

Xpd Transient direct-axis reactance 0.2 

H Inertia Constant 5 

Tpdo Direct-axis transient short-circuit time constant 7 

KA AVR gain 100 

TA AVR time constant 1 

f0 System frequency 50 
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 Table 2 Reactance values of line and transformer parameters 

Network and Transformer's Parameters 

Xl1 Line reactance 0.2 

Xl2 Line reactance 0.2 

Xl3 Line reactance 0.2 

Xl4 Line reactance 0.2 

Xt Transformer reactance 0.1 

Table 3 Quantities obtained from load flow studies 
Load Flow Analysis 

Vt Terminal voltage 1.05 

Pe0 Real power output of the machine 0.8 

Qe0 Reactive power output of the machine 0.6 

W0 Rated angular velocity 314.15927 

 

As shown in Figure 2, it is assumed that a 
short circuit error on terminal 3 will somehow 
fluctuate for the generator fault. By the 
relationships introduced in this section, the 
TCBR control model is coded in the MATLAB 
software space. According to the program 
presented below, the generator angle and 
velocity fluctuations in the presence and 
absence of TCBR are presented. An overview of 
the generator angle and velocity fluctuations in 
exchange for the presence or absence of TCBR 
is given in Figures 3 to 6. According to Figures 3 
and 4, it is observed that in the absence of TCBR 

and with increasing time, angle and velocity 
both decrease and become unstable. Also, in 
Figures 5 and 6, it is observed that in the 
presence of TCBR, the time, angle and velocity 
decrease favorably. This section illustrates the 
ability of TCBR to dampen fluctuations. The 
results of the above simulations show that if the 
TCBR is used at the right time and optimally, 
the rotor angle fluctuations of the generators 
will be attenuated appropriately. It can be seen 
in this section that using a control element in 
the network can help attenuate the damping of 
the network [36-41]. 

 
Figure 3 Generator angle oscillation without the presence of TCBR 
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Figure 4 Generator speed oscillation without the presence of TCBR 

 
Figure 5 Generator angle oscillations in the presence of TCBR 

 
Figure 6 Generator speed oscillations in the presence of TCBR 
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Conclusion 

In this paper, while introducing the different 
capabilities and applications of FACTS 
equipment in different areas, the proposed 
solution to reduce losses is to use FACTS 
controllers. Among these devices, the focus on a 
power flow controller called Dynamic Brake 
Resistance (TCBR) and its purpose is to 
investigate its impact and adjustment for 
transient network stability. To investigate the 
impact of TCBR on transient stability studies, a 
suitable mathematical model has been 
described and an appropriate power injection 
model has been demonstrated to demonstrate 
its playability. The introduction of the TCBR 
model into the network understudy to perform 
optimum broadcast computation by MATLAB 
software was done by adding a virtual bus to 
the network. This virtual bus, which we 
consider nb+1, was added to the Toolbox and 
the network equipped with this equipment was 
compared to TCBR-free. The analysis of the 
results shows that by adding a TCBR number to 
the studied network, the unstable fluctuations 
in the network have been desperately 
attenuated. In this regard, the most suitable 
location for IPC installation is to increase the 
attenuation of the system in the generator bus. 
The main advantages of the proposed method 
over the previous methods can be summarized 
in the simplicity of problem analysis and its 
formulation, satisfying all constraints of 
equality and inequality in achieving the optimal 
work point. Comparison of the proposed 
method with the work done in the field shows 
that, unlike previous methods, TCBR as a 
cheaper FACTS controller has increased 
network stability to a greater extent. At the 
same time, it offers other capabilities such as 
fault current limiting, independent control of 
active and reactive power, thereby increasing 
system flexibility. 
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